
Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007)

Lecture 33: LDPC Codes
November 12, 2007

Lecturer: Atri Rudra Scribe: Michel Kulhandjian

Low Density Parity Check (LDPC) codes were first introduced by Gallager [1] in his thesis.
After the invention, these codes were largely forgotten and there was “no activity” till mid-late
90s when there was a renewed spurt of research activity on LDPC codes. Available resource for
the state-of-the-art in LDPC codes can be found in Richardson-Urbanke book [4]. For a quick
overview, see the survey by Guruswami [2]. In this lecture, we are going mainly to follow the sur-
vey by Guruswami. Unlike other classes of codes that we have seen, LDPC codes are accompanied
by very fast encoding and decoding algorithms. For example, we have seen that the capacity of
the

�������
can be achieved with decoding time complexity poly �	��

� poly ����
 . We want the decoding

time ideally to be � poly ����
 . LDPC codes provably achieve this though for
�������

(Luby et al
[3]). This makes LDPC codes not only attractive from the theoretical point of view, but also for
practical applications. However, we will not discuss LDPC codes of Luby et al in this lecture but
go through some of Gallager’s results and some brief idea how his ideas extended. The name of
the code suggest that it has to do with parity check codes.

1 Low Density Parity Check Codes
Recall that any � �������! code has an �	�#"$�%
'&(� parity check matrix) . Every parity check matrix)
can be associated with a factor graph * . In particular * is a bipartite graph that has � left vertices,
called variable nodes, one for each codeword position. On the right are �+",� vertices, called
check nodes, one for each parity check (or row in)). A check node is adjacent to all variable
nodes whose corresponding codeword symbols appear in the corresponding row in) . In other
words,) is precisely the adjacency matrix of * .

Let us fix some notation that we will use later. Recall that a code
�

with parity check matrix) is defined as follows: for every -$. � ,)/-103254 . In other words there are �6�/"7�%
 constraints
on �98 � �;:;:<:<�=8�>�
 variables, where 8�? denotes the @ th bit in a codeword. Let the A th �
BDC7AECF�G"H�%

parity check (or equivalently)JIK�98 � �;:;:;:L�=8M>N
O0) be denoted by PQI . There is an edge �98�?R�	PNIS
 in * if8M? occurs in PQI or equivalently)TIU?V2WB , where)TIU? is the entry corresponding to row A and column@ in) . For example �YXQ��Z[�=\K�6 Hamming code has a \]&^X parity check matrix) :_`ba a a B B B Ba B B a a B BB a B a B a B cd

1

and the corresponding factor graph of) is:

1c
2c
3c
4c
5c
6c
7c

1p

2p

3p

Figure 1: Factor graph of the Hamming code

The number of edges equals the number of ones in the parity check matrix. According to
definition of sparse bipartite graph, the number of ones in parity check matrix) is bounded bye �	�b
 . Equivalently the number of edges in the factor graph is bounded by

e �6�b
 .
Definition 1.1. A special class of LDPC codes are regular LDPC codes where the factor graph
has left vertexes with degree exactly fhg and every right vertexes with degree exactly f�i for integersf1g1�=fhikj5B .

This regular LDPC codes were originally studied by Gallager. We claim that the rate l of�9fKg1�Mf1i=
 -regular LDPC code is equal to lm2WB�" fKgfhi :
This is because the number of edges of factor graph is equal to f�gn�72ofhin�	�^"p�%
 . Note that this
implies fhikqrfKg for positive l . We will consider families of regular LDPC codes that are obtained
by constructing a family of �9fhg1�=fhi=
 -regular factor graphs with � variable nodes with girth greater
than s(�utwvhx���
 . We will also need the following graph-theoretic notion.

2

Definition 1.2. Girth of a graph is the size of the smallest cycle.

1v

Cycle

2v

tv

1tv

In this graph y � �;:<:;:<��y{z is a cycle.

Gallager proved in the following results [1]:

(i) With high probability, for large enough f|g and fhi , a random �9f1g1�Mf1i=
 -regular LDPC code
achieves the GV bound (for large enough �).

(ii) Random �9f1g1�=fhi=
 -regular LDPC codes (along with MLD) get “close” to
�D�}���

capacity.

Since only exponential time solutions to the MLD function are known, Gallager also developed
simple, iterative decoding algorithm for LDPC codes. We are not going to look (i) or (ii) and going
to study the performance of regular LDPC codes over the

�����~�
.

1.1 Decoding on the �����]�
Although Gallager did not explicitly study

���D���
, his methods do apply to it. For the

���D���
we will study an iterative message-passing decoding algorithm. General idea of such a decoding
algorithm is to pass messages in round. Each round has two phases. In the first phase mes-
sages are passed from variable nodes to check nodes (of the factor graph). In the second phase,
messages are passed back from the check nodes to the variable nodes. Let the received word be� 2��	� � �<:;:;:<���{>N
k.�� a �;Bh���1� > and for each round messages are sent as follows:

(i) variable-to-check message phase: If �u8n?U�uP�I;
 is an edge then 8�? sends PNI a message. In partic-
ular, if �K?k�2T� then 8�? passes along �K? to all its neighboring check nodes.

(ii) check-to-variable message phase: If ��P�I��M8M?9
 is an edge, the PQI sends 8�? a message. In the
particular, if the check node PQI knows the correct value for 8�? , it passes the value to 8�? .

In particular, the messages will have the following semantics:

1. If variable 8�? knows its correct value then the message is the value, else the message is an
erasure.

2. If check node PQI knows the value of 8�? then passes that value, else it passes an erasure.

3

At end (hopefully) every 8�? knows its value with high probability. The message-passing decoding
algorithm has the following extrinsic property: the message that is sent from, 8S? to PNI does not
depend on message sent by P�I in the previous round (a similar property holds for messages sent
from the variable nodes to the parity check nodes). Formally the message maps are given as
follows, message 8�?V��PNI in round � is:� z6� �M�iu� �6�{?���� z	� �� �;:;:;:L��� z6� ���� � �
�� � a �;Bh���K�N�
where � z	� �� �<:;:;:<��� z6� ���� � � are the f1g["EB messages received by 8�? from all its neighboring check nodes
other than PNI , in the previous round. Generally the parameter P%I is dropped because the mapping
is the same for every PQI . The mapping of message PQI~� 8M? in round � is:� z6� iu��M� �	� z � �;:;:;:<��� z�=� � �
�� � a �<B1���K�N�
where again � z � �;:<:;:<��� z� � � � are the fhi�"�B messages received from all the variable nodes other
than 8�? in the current round (recall that the check node to variable nodes phase takes place after
variable-to-check node phase in the same round). Similarly for check nodes the parameter 8<? is
dropped because generally it is the same for every 8S? .

We now define the message functions. In round ��2 B , message 8S?]� P�I is computed as
follows: � � � �M�iu� �	�{?R��� � � �<:;:;:<��� ���� � �
�2¡�{?
and for �kjF� we have:

� z6� �M�iu� �6�{?R��� z6� �� �;:;:;:L��� z6� ���� � �
�2£¢~¤ , if at least one of �L�K?R��� z	� �� �;:;:;:L��� z6� ���� � � � is b .+� a �;BK�� , if �{?¥2p� z	� �� 2W:<:;:N2p� z	� �� � � � 27�
and message PQI~� 8M? when �kjWB we have:� z6� iu��M� �	� z � �;:<:;:<��� z�
� � �
�2 ¢ � , if any one of � z? 27�� z ��¦ :;:<: ¦ � z �
� � � , otherwise

Recall that the codewords are those vectors �98 � �;:;:;:<�=8�>�
 such that for all check nodes the sum of
the neighboring positions among the message nodes is zero, i.e.8M? ¦ � z	� �� ¦ :;:;: ¦ � z6� �� � � � 2 a :
In other words if

� z!� �=�i	� �R§�
 only transmits correct values in � a �;BK� , then
� z!� i	��=� �R§�
 computes the correct

bit for 8�? if all its inputs are in � a �;BK� .
4

t

1dc
m

i
c

j
p

t

1
m

t
1

d cm

t

1
m

i

j

t,c

p

Figure 2: Message computation for 8�?
References
[1] R.G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, Cambridge, MA, 1963.

[2] V. Guruswami. Iterative decoding of low-density parity check codes (a survey). Bulletin of the
EATCS, September 2006.

[3] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient erasure correcting
codes. IEEE Transactions on Information Theory, 47(2):569–584, 2001.

[4] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press, 2007.

5

