Error Correcting Codes: Combinatorics, Algorithms and App lications (Fall 2007)

Lecture 35: Threshold Computation
November 16, 2007

Lecturer: Atri Rudra Scribe: Nathan Russell

We recall that in BEC, we can receivé, 1 or 7 at each node.

We recall that when considering communications sent frorareabile node to a check node, if
the variable node in question got some {0, 1} as its received word, it will always serbdsince
it now knows the value.
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In the last lecture, we saw that the message sent from cheatk toovariable node; depends
on the messages it received from nodes other thaself. Using this property and the fact that the
number of iterations is at most a fourth of the girth of thedagraph, we showed that all messages
received by a check (or, for that matter, variable) node yraand: < ¢ are independent random
variables. In another lecture, we will see that we can imglenthis message passing algorithm in
O(n) time.

Recall, we defined, as the probability of an erasure being passed from varialdbéck nodes
in roundr, ands!. as being the probability of an erasure being passed in ther dtlection. Next,
we defines,.,; in terms ofs,..

Recall that in round + 1, ¢; sends an erasure {9 if and only if all its incoming messages
in roundr were erasures and it receivggd =?. Thus,s,; = a - (s.)®~!, where we used the
fact that all the messages receiveddpyare independent random variables and the fact¢hat
independent of the choice of edge.

p; Will send an erasure to; if any one of the incoming messages was an erasure. Thus, we
have that! = (1 — s,)%~! and

Srq1 = (1l — (r — 5,)% )L,
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Next, we will analyze the performance of the message pasdgayithm. To do that we will need
the following definition.

Definition 1.1. o = min,efo,1] gog—pyir—ryz—

Theorem 1.2.1f a < o*, the message decoder recovers the transmitted code wdrghreivability
1—27",

Proof. Pick¢ = |2} (as we need( < g, whereg is the girth in round’ and is the total number
of rounds for our proof that all messages are independeighlas). Then/ = Q(logn).

We will show thats, < 2-7"%,

By the union bound the probability that there’s no erasurg geround/ is at leastl — (#
edgess,, and since the number of edgesin), this is at least — 2~ as required.

We show this in two steps:

1. Aftert = O(1) rounds,s, is less thamin(; = )= 2p—1.

2. Forany round > t, s,,; < s:* for somes > 0.

Q1)

If we can show these two steps to be true, we will have that 2= . This holds since
se < (s,)0%9" and so, by Step 15, < (1)(+9"" for somea > 1. Flnally ast = O(1) and
¢ =Q(logn), s, < 27",

We will now show that the statements above are true.

We begin with step 1.

Defineg(z) £ T —ms—ya—T» and note that we have’ = min,c(o,1 g(z).Definef (o, z) =
a(l — (1 —x)%1)4~-1 Note thats,,; = f(a, s,).

Further, by definition,

*

fla,z) = 9@ (5)(51(93)) < (E)x’

where the inequalitry follows from the fact that < g(x).
Thus, for allr, s, < (2)s,, and note that: < 1.
To make sure that, < b where b is NEED DEF HERE, we can use the above equation,
= O(log = (%)) times. Note that = O(1) as claimed.
This proved Step 1. We now move to Step 2. For this, we will niedfollowing fact: Fix
r/geqt. If a > 1is anintegerandz < 1, (1 — x) >1-—ax. We leave the proof as an exercise.
Using the fact above and the fact tbat< - (ass; < 7= ands, < s, we get:

Spp1 = a(l— (1 - Sr)dc_l)dv_l < af(de — 1)s,) 7!
By Step 1, we also have < s; < L — and itis also the case thgt,; < 8£1+e)'

. (a(de—1)dv—1)dy—2—¢
This completes the proof. 0J




Using standard calculus, it can be shown thatis is the root of the polynomiaP(x) =

(f=f = Dat -2 Y

Remark 1.3. As a few concrete notes, from this formula, note that whes 2, o* = 0 so for
any meaningful performance we ne&d> 3 which then required,. > 4 for positive rate. If we
choose these exact valuds,= 3 andd,. = 4, we haven* = 0.6474. At capacity, we would have
a = 1 — rate and since rate i$ — fl— this is% = 0.75 < «o*. Infact, it can be shown that capacity
is never achieved for any fixed valuesipfandd...
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