Error Correcting Codes: Combinatorics, Algorithms and App lications (Fall 2007)

Lecture 41: Parvaresh-Vardy List Decoder
December 5, 2007
Lecturer: Atri Rudra Scribe: Nathan Russell

1 Recap

We recall from the last lecture that a folded Reed-Solomatedeegins with a normal RS code,
which is a[n = ¢ — 1, k],-code with codewords of the forfif (1)], [f ()], [/ (4], - -, [f (7" )]
These are then combined into groupsotymbols which each become a new symbol, so that the
codeword becomes something of the fdiftil), f (), ..., F(y™ Y], [f (™), F(y™ Y .o, f(*™ Y], .. [f (™
We assume for the moment thatevenly divides:, though this assumption will prove unneces-
sary.
Thus we have the new parametéfs— % andN = =, so that the rate remains the same. We
end up with a FRS code FRS, ¢ ,. We will present everything fom = 2, but it proves to work
for anym.

2 List Decoding

In defining the list decoding problem, we will take as inpuat, y;, z;)|Y., € F? and a so-called
“agreement parameter” > 0. The output will be all degre& K polynomialsf(X) such that
the FRS codeword corresponding £0X') agrees with the received word in at leagtlaces. The
algorithm we will use is as follows:

1. Step 1: Compute a non-zer@(X, Y, Z) of (1, K, R)-weighted degree at mo# such that
it hasr > 0 roots atQ(«;, y;, z;) for somel <i < N.

2. Step 2:Recoverf(X) from Q(X,Y, Z) such that it has the required properties.

At this point, we need a few definitions:

Definition 2.1. (1, k, k)-weighted degree of a monomial X ‘Y7 Z7 isi + kj + kjl. ATRI: Changed
the last constant from z in my notes to [ to reduce confusion -N

Definition 2.2. Q(X,Y, Z) having r rootsat («, 31, B2) impliesthat Q(X + «, Y + 31, Z + (» has
no monomial of degree lessthan r.

In Step 1, we need that the number of coefficients is greaser the number of constraints.

There areN ("1?) constraints, an¢{ (i, ji, jo)|i + kj1 + kja < D}| > L, coefficients.



The range ofi, ji, j2) is a series of intervalg, : + 1) x [j1,71 + 1) X [j2, j2 + 1). The volume
of this cuboidC (7, ji, j2) is 1, since all its edges are of length 1. We defiigk) to be the volume
of the union of cuboids such that- kj, + kj, < D with 4, j,, j, € Z=2°.

We note that this volume is at least the volume of of the culgid, j;, 72)|i + (j1 + Jz)k; <
D}, i, 71,72 € R=Y, which can be shown (leaving the proof as an exercise) t& . The
former volume can be thought of as a union of squares, eacdfirgeevals(i,i + 1) x [j1,j; + 1).
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Figure 1: Real vs. integer volumes

For example, see the plot above, where the area containeng#hs summing to 6 is less than
that containing the integers summing to 7.

We chooseéD to be[ ¢/ NR?r(r + 1)(r + 2)]+1form = 2. Forgenerain, Dis [ "/ NK™r(r + 1)(r + 2)]-
1.

At this point, we require a lemma.

Lemma 2.3.If tr > D, then if f(X) needs to be output then there exists a polynomial time
algorithmto extract such f(X)'sfromQ(X,Y, Z).

Assuming the above lemma, we have that \/K2 i+1)(1+42)+ 2.

r’

Sincet > v NR? + 1 by suitable choice of, we getl — ¢ I]f,—ﬁ + N-

This gives us that, since the number of errord/ist, the fraction of errors is {’/ﬁ—;(l + L1+ 2)+

2 =1—(1+6)%/%,. By choosing a suitable, with » = O(1), we end up showing that the
bound on fraction of errors is — (1 + §)3V4R3.
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We recall again thalv = 5 and soR = % =

notes, ot sure where it goes -N)
For generaln, we getl — ™%/(mR)™, as shown by Paravesh and Vardy in 2005.
Remarks:

[NEINES

= & (ATRI: This is off to the side in my

1. This method is not useful fdt > 1.
2. FOrR < 5,1 - V4R > 1— VR.

3. Choosingn appropriately, we can corrett-¢ fraction of errors. We can gét = O (%)
recalling that at capacitif = Q(=?), and Reed-Solomon codes gaverus- Q(c?). )
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Figure 2: The values in point 2 plotted against each other

GRAPH GOES HERE
To show Lemma 2.3, we need another lemma:

Lemma 2.4. Thereexistsanirreducible polynomial £(X) of degree ¢—1 suchthat f(X)%modE(X) =
f(yX) for any f of degree < ¢ — 1.

We will show this second lemma in the next lecture.
Proof of Lemma 2.3: Let Qy(X,Y, Z) be such that)(X,Y, Z) = E(X)*Qu(X,Y, Z) for the
largest possible integér That is,£(X) doesn’t divide), because not all coefficients are divisible
by it.



We can consideRq (X, Y, Z) = Ty(X, Y, Z), thinking of the coefficients as being chosen from
F,(X).

As an example of this sort of factorizatin, we can considantistg with something likeX?Y +
XY +Y?Z and factor out the biggest polynomial ov€r gettingY (X 2+ X )+Y2Z. We know that,
sinceE(X) isirreducibleF,[X]/E(X) = F.-1. This means that (Y, Z) £ Ty (Y, Z)mod E(X).
We note thatl'(Y, Z) # 0 as E(X) doesn't divideQy(X,Y, 7). Also, Q(w;,y;,z) = 0 &
Qolai,yi, z:) = 0. Finally, R(X) = Qo(X, f(X). f(7X)) = g(X).

ConsiderI'(f(X), f(vX)). If we computef (X) from this, thenf(X) € F—1 and f(7.X) =
f(X)* mod E(X). We want ally” € F .1 such thatl'(Y,Y*) = 0 andR(Y) = T(Y,Y?). We
will show later the reason for the former restriction Bn

We will additionally show that, iff(X) needs to be output, théR(f(X), f(vX)) = 0
T(f(X), f(X)*) = 0.

Note that we need to find all roots &f(Y") overF .—:. This can be done in polynomial time,
as shown by Berlekamp.
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