
Error Correcting Codes: Combinatorics, Algorithms and App lications (Fall 2007)

Lecture 8: Shannon’s Noise Models
September 14, 2007

Lecturer: Atri Rudra Scribe: Sandipan Kundu& Atri Rudra

Till now we have concentrated on the worst case noise model pioneered by Hamming. In
today’s lecture, we will study some stochastic noise models(most of) which were first studied by
Shannon.

1 Overview of Shannon’s Result

Shannon introduced the notion of reliable communication over noisy channels. Broadly, there are
two types of channels that were studied by Shannon:

• Noisy Channel: This type of channel introduces error in during transmission, which results
in incorrect reception of the transmitted signal by the receiver. Redundancy is added at the
transmitter to increase reliability of the transmitted data. The redundancy is taken off at the
receiver. This process is termed asChannel Coding.

• Noise-free Channel: As the name suggests, this channel does not introduce any type of
error in transmission. Redundancy in source data is being used for of the compression of
the source data in the transmitter. The data is decompressedat the receiver. The process is
popularly known asSource Coding.

The figure below presents a generic model of a communication system, which combines the two
concepts we discussed above:

Message→ Source Encoder→ Channel Encoder→ Channel→
→ Channel→ Channel Decoder→ Source Decoder→ Decoded Message

In the figure above, source coding and channel coding are coupled. However, Shannon’s source
coding theorem allows us to decouple both these parts of the communication and study each of
these parts separately. Intuitively, this makes sense: if one can have reliable communication over
the channel using channel coding, then for the source codingthe channel effectively has no noise.

For source coding, Shannon proved a theorem that precisely calculated the amount by which
the message can be compressed: this amount is related to the “entropy” of the message. We
will however, not talk about source coding in any detail in this course. From now on, we will
exclusively focus on the channel coding part of the communication setup. Note that one aspect of
channel coding is how we model the channel noise. We have seenHamming’s worst case noise
model in some detail. Next, we will study some specific stochastic channels.
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2 Shannon’s Noise Model

Shannon proposed a stochastic way of modeling noise. The symbols that are input to the channel
are assumed to come from someinput alphabetX, while the channel spits out symbols from its
output alphabetY. The following diagram shows this relationship:

X ∋ x→ channel→ y ∈ Y

The channels considered by Shannon are alsomemoryless, that is, noise acts independently on each
transmitted symbol. In this course, well only studydiscretechannels where both the alphabetsX
andY are finite (today we will define one channel that is not discrete, though we will not study it
in any detail later on).

The final piece in specification of a channel is thetransition matrixM that governs the process
of how the channel introduces error. In particular, the channel is described in form of a matrix with
entries as cross over probability over all combination of the input and output alphabets. For any
pair (x, y) ∈ X × Y, let Pr(y|x) denote the probability that whenx is input to the channel andy is
output by the channel. Then the transition matrix is given byM (x, y) = Pr(y|x). Specific structure
of the matrix is shown below.
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Next, we look at some specific instances of channels.

2.1 Binary Symmetric Channel (BSC)

Let 0≤ p ≤ 1
2. The Binary Symmetric Channel withcrossover probability por BS Cp is defined as

follows. X = Y = {0, 1}. The 2×2 transition matrix can naturally be represented as a bipartite graph
where the left vertices correspond to the rows and the right vertices correspond to the columns of
the matrix, whereM (x, y) is represented as the weight of the corresponding (x, y) edge. ForBS Cp,
the graph looks as follows:
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In other words, every bit is flipped with probabilityp.

2.2 q-ary Symmetric Channel (qSC)

We now look at the generalization ofBS Cp to alphabets of sizeq ≥ 2. Let 0≤ p ≤ 1− 1
q. Theq-ary

Symmetric Channel with crossover probabilityp, orqS Cp is defined as follows.X = Y = [q]. The
transition matrixM for qS Cp is defined as follows.

M(x, y) =

{

1− p if y = x
p

q−1 if y , x

In other words, every symbol is left untouched with probability 1 − p and is distorted to each of
theq− 1 possible different symbols with equal probability.

2.3 Binary Erasure Channel (BEC)

In the previous two examples that we saw,X = Y. However this need not always be the case.
Let 0 ≤ α ≤ 1. The Binary Erasure Channel witherasure probabilityα is defined as follows.

X = {0, 1} andY = {0, 1, ?}, where ? denotes an “erasure.” The transition matrix is as follows:

In the above any edge that is not present represents a transition that occurs with 0 probability.
In other words, every bit inBECα is erased with probabilityα (and is left as is with probability
1− α).

2.4 Binary Input Additive Gaussian White Noise Channel (BIAGWN)

We now look at a channel that is not discrete. Letσ ≥ 0. The Binary Input Additive Gaussian
White Noise Channel with standard deviationσ or BIAGWNσ is defined as follows.X = {−1, 1}
andY = R. The noise is modeled by continuous Gaussian probability distribution function. The
Gaussian distribution has lots of nice properties and is a popular choice for modeling noise of
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continuous nature. Given (x, y) ∈ {−1, 1} × R, the noisey − x is distributed according to the
Gaussian distribution of zero mean and standard deviation of σ. In other words,

Pr (y | x) =
1

σ
√

2π
· exp

(

−
(

(y− x)2

2σ2

))

3 Error Correction in Stochastic Noise Models

We now need to revisit the notion of error correction. Note that unlike in Hamming’s noise model,
we cannot hope toalwaysrecover the transmitted codeword. As an example, inBS Cp there is
always some positive probability that can a codeword can be distorted into another codeword dur-
ing transmission. In such a scenario no decoding algorithm can hope to recover the transmitted
codeword. Thus, in stochastic channels there is always willbe somedecoding error probability
(where the randomness is from the channel noise). However, we would like this error probability
to be small for every possible transmitted codeword. More precisely, for every message, we would
like the decoding algorithm to recover the transmitted message with probability 1− f (n), where
limn→∞ f (n)→ 0, that is f (n) is o(1). Ideally, we would like to havef (n) = 2−Ω(n).

3.1 Shannon’s General Theorem

Recall that the big question that we are interested in this course is the tradeoff between the rate of
the code and the fraction of errors that can be corrected. Forstochastic noise models that we have
seen, it is natural to think of the fraction of errors to be theparameter that governs the amount of
error that is introduced by the channel. For example, forBS Cp, we will think of p as the fraction
of errors.

Shannon’s remarkable theorem on channel coding was topreciselyidentify when reliable trans-
mission is possible over the stochastic noise models that heconsidered. In particular, for the gen-
eral framework of noise models that he considered, Shannon defined the notion ofcapacity, which
is a real number such that reliable communication is possible if and only if the rate is less than the
capacity of the channel.

We are going to state (and prove) Shannon’s general result for the special case ofBS Cp. To
state the result, we will need the following definition:

Definition 3.1 (q-ary Entropy Function). Let q≥ 2 be an integer and0 ≤ x ≤ 1 be a real. Then
the q-ary entropy functionis defined as follows:

Hq(x) = x logq(q− 1)− x logq(x) − (1− x) logq(1− x).

See Figure 1 for a pictorial representation of theHq(·) for the first few values ofq. For the
special case ofq = 2, we will drop the subscript from the entropy function and denoteH2(x) by
just H(x), that is,H(x) = −x log x − (1 − x) log(1− x), where logx is defined as log2(x) (we are
going to follows this convention for the rest of the course).

We are now ready to state the theorem:
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Figure 1: A plot ofHq(x) for q = 2, 3 and 4. The maximum value of 1 is achieved atx = 1− 1/q.

Theorem 3.2(Shannon’s Capacity for BSC). For reals0 ≤ p < 1
2 and0 ≤ ε ≤ 1

2 − p, the following
hold for large enough n.

1. There exists a realδ > 0, an encoding function E: {0, 1}k→ {0, 1}n and a decoding function
D : {0, 1}n → {0, 1}k where k≤ ⌊1 − H(p + ε)n⌋, such that the following holds for every
m ∈ {0, 1}k.

Pr
Noisee from BSC

[D(E(m) + e)) , m] ≤ 2−δn.

2. If k ≥ ⌈(1−H(p)+ε)n⌉ then for every pair of encoding and decoding functions, E: {0, 1}k→
{0, 1{n and D : {0, 1}n→ {0, 1}k, there existsm ∈ {0, 1}k such that

Pr
Noisee from BSC

[D(E(m) + e)) , m] ≥ 1
2
.

Remark 3.3. Theorem 3.2 implies that the capacity of BS Cp is 1− H(p). It can also been shown
that the capacity of qS Cp and BECα are1− Hq(p) and1− α respectively.

The appearance of the entropy function in Theorem 3.2 might surprise the reader who has not
seen the theorem before. Without going into the details of the proof for now we remark that the
entropy function gives a very good estimate of the volume of aHamming ball. In particular, recall
that Bq(y, ρn) is the Hamming Ball of radiusρn, that is,Bq(y, ρn) = {x ∈ [q]n|∆(x, y) ≤ ρn}. Let
Volq(y, ρn) = |Bq(y, ρn)| denote thevolumeof the Hamming ball of radiusρn. Note that since the
volume of a Hamming ball is translation invariant,Volq(y, ρn) = Volq(0, ρn). We will need the
following inequalities in the proof of Theorem 3.2.
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Proposition 3.4. Let q≥ 2, n ≥ 1 be integers and let0 ≤ ρ ≤ 1− 1
q be a real. Then the following

inequalities hold:

1. Volq(0, ρn) ≤ qnHq(ρ); and

2. Volq(0, ρn) ≥ qnHq(ρ)−o(n).

In the next lecture, we will see the proof of Proposition 3.4 as well as the proof of the “negative”
part of Theorem 3.2.
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