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Till now we have concentrated on the worst case noise modelegred by Hamming. In
today’s lecture, we will study some stochastic noise moffatsst of) which were first studied by
Shannon.

1 Overview of Shannon’s Result

Shannon introduced the notion of reliable communicatiogr owisy channels. Broadly, there are
two types of channels that were studied by Shannon:

¢ Noisy Channel: This type of channel introduces error in during transnoisswhich results
in incorrect reception of the transmitted signal by the nesre Redundancy is added at the
transmitter to increase reliability of the transmittedadafhe redundancy is takefff at the
receiver. This process is termed@sannel Coding

¢ Noise-free Channel: As the name suggests, this channel does not introduce aeydty
error in transmission. Redundancy in source data is beiad o of the compression of
the source data in the transmitter. The data is decompresdbd receiver. The process is
popularly known assource Coding

The figure below presents a generic model of a communicayistes), which combines the two
concepts we discussed above:

Message- | Source Encoder— | Channel Encoders Channel—
— Channel- | Channel Decodgr— | Source Decodér— Decoded Message

In the figure above, source coding and channel coding arel@duplowever, Shannon’s source
coding theorem allows us to decouple both these parts ofdherunication and study each of
these parts separately. Intuitively, this makes sensenéfaan have reliable communication over
the channel using channel coding, then for the source cableaghannel gectively has no noise.

For source coding, Shannon proved a theorem that preciaklylated the amount by which
the message can be compressed: this amount is related tenhepy” of the message. We
will however, not talk about source coding in any detail irstbourse. From now on, we will
exclusively focus on the channel coding part of the commatioa setup. Note that one aspect of
channel coding is how we model the channel noise. We haveldasmming’s worst case noise
model in some detail. Next, we will study some specific stestbahannels.



2 Shannon’s Noise Model

Shannon proposed a stochastic way of modeling noise. Thbdagrthat are input to the channel
are assumed to come from som@ut alphabetX, while the channel spits out symbols from its
output alphabel . The following diagram shows this relationship:

X 3 x—|channe| - yeY

The channels considered by Shannon arermlsmorylesghat is, noise acts independently on each
transmitted symbol. In this course, well only studigcretechannels where both the alphabXts
andY are finite (today we will define one channel that is not disgrigtough we will not study it

in any detail later on).

The final piece in specification of a channel is tfansition matrixM that governs the process
of how the channel introduces error. In particular, the clehis described in form of a matrix with
entries as cross over probability over all combination @f ithput and output alphabets. For any
pair (x,y) € X x Y, let Pr(y|x) denote the probability that whenis input to the channel angis
output by the channel. Then the transition matrix is givemdyx, y) = Pr(y|x). Specific structure
of the matrix is shown below.

M =] Prop

Next, we look at some specific instances of channels.

2.1 Binary Symmetric Channel (BSC)

LetO<p< % The Binary Symmetric Channel witttossover probability pr BS G, is defined as
follows. X =Y = {0, 1}. The 22 transition matrix can naturally be represented as a hipgraph
where the left vertices correspond to the rows and the rigtttoes correspond to the columns of
the matrix, wherévi (x, y) is represented as the weight of the corresponding edge. FoBS G,
the graph looks as follows:

Slnary
Symmeairic
Channel



In other words, every bit is flipped with probabilify

2.2 g-ary Symmetric Channel (gSC)

We now look at the generalization BS G, to alphabets of sizg > 2. Let0< p<1- % Theg-ary
Symmetric Channel with crossover probabilityor gS G, is defined as followsX = Y = [q]. The
transition matrixv for qS G, is defined as follows.

1-p ify=x
M(X, = { .
(x.y) qul if y# x
In other words, every symbol is left untouched with probigpil — p and is distorted to each of
theq — 1 possible dierent symbols with equal probability.

2.3 Binary Erasure Channel (BEC)

In the previous two examples that we saiv= Y. However this need not always be the case.
Let 0 < @ < 1. The Binary Erasure Channel wighasure probabilityr is defined as follows.
X =1{0,1} andY = {0, 1, ?}, where ? denotes an “erasure.” The transition matrix is lksie:

Sinary Eragune
Chanrs|

In the above any edge that is not present represents a toarnsiat occurs with 0 probability.
In other words, every bit IBEG, is erased with probability (and is left as is with probability
1-a).

2.4 Binary Input Additive Gaussian White Noise Channel (BIAGWN)

We now look at a channel that is not discrete. ket 0. The Binary Input Additive Gaussian
White Noise Channel with standard deviatioror BIAGWN. is defined as followsX = {-1, 1}
andY = R. The noise is modeled by continuous Gaussian probabil#yidution function. The
Gaussian distribution has lots of nice properties and is@ulaom choice for modeling noise of



continuous nature. Giverx(y) € {-1,1} x R, the noisey — x is distributed according to the
Gaussian distribution of zero mean and standard deviafion b other words,

W2
Pr(y| x) = - 1271 .exp(— ((yzo-)Z() ))

3 Error Correction in Stochastic Noise Models

We now need to revisit the notion of error correction. Not timlike in Hamming’s noise model,
we cannot hope talwaysrecover the transmitted codeword. As an exampleB8G, there is
always some positive probability that can a codeword canidierted into another codeword dur-
ing transmission. In such a scenario no decoding algoritamhope to recover the transmitted
codeword. Thus, in stochastic channels there is alwaysbheibomedecoding error probability
(where the randomness is from the channel noise). Howewewaould like this error probability
to be small for every possible transmitted codeword. Moeeigely, for every message, we would
like the decoding algorithm to recover the transmitted rageswith probability 1= f(n), where
limn_e f(N) = 0, that isf(n) is o(1). Ideally, we would like to havé(n) = 279M,

3.1 Shannon’s General Theorem

Recall that the big question that we are interested in thissmis the tradgbbetween the rate of
the code and the fraction of errors that can be correctedstbohastic noise models that we have
seen, it is natural to think of the fraction of errors to be plaeameter that governs the amount of
error that is introduced by the channel. For exampleB8IG,, we will think of p as the fraction
of errors.

Shannon’s remarkable theorem on channel coding waetaselyidentify when reliable trans-
mission is possible over the stochastic noise models thabhsidered. In particular, for the gen-
eral framework of noise models that he considered, Shanefamedi the notion ofapacity which
is a real number such that reliable communication is posdilaind only if the rate is less than the
capacity of the channel.

We are going to state (and prove) Shannon’s general resulhéospecial case @S G,. To
state the result, we will need the following definition:

Definition 3.1 (g-ary Entropy Function)Let g > 2 be an integer an@d < x < 1 be a real. Then
the gary entropy functions defined as follows:

Hq(X) = xlog,(q — 1) — xlog,(x) — (1 - x) log,(1 - X).

See Figuré]l for a pictorial representation of thg-) for the first few values of}. For the
special case off = 2, we will drop the subscript from the entropy function anchake H,(x) by
just H(x), that is,H(x) = —xlogx — (1 — x)log(1 — Xx), where logx is defined as logx) (we are
going to follows this convention for the rest of the course).

We are now ready to state the theorem:
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Figure 1: A plot ofHq(X) for g = 2,3 and 4. The maximum value of 1 is achievexat 1 - 1/q.

Theorem 3.2(Shannon’s Capacity for BSClor reals0 < p < % andO0<e < %— p, the following
hold for large enough n.

1. There exists a redl > 0, an encoding function E{0, 1} — {0, 1}" and a decoding function
D : {0,1}" — {0, 1} where k< [1 — H(p + &)nJ, such that the following holds for every
m € {0, 1}K.
-on
Noiseeﬁgm BSJD(E(m) * e)) * m] <27
2. Ifk > [(1-H(p)+&)n] then for every pair of encoding and decoding functions (& 1} —
{0, 1{"and D: {0, 1} — {0, 1}, there existsn < {0, 1} such that

Pr JD(E(m) +€)+m]> %

Noisee from BS

Remark 3.3. Theoreni.312 implies that the capacity of BS€1 — H(p). It can also been shown
that the capacity of qSCand BEG, are 1 — Hy(p) and1 — « respectively.

The appearance of the entropy function in Theokermh 3.2 migiprise the reader who has not
seen the theorem before. Without going into the details efpitoof for now we remark that the
entropy function gives a very good estimate of the volumelddenming ball. In particular, recall
that B4(y, pn) is the Hamming Ball of radiupn, that is,By(y, on) = {x € [q]"|A(X,y) < pn}. Let
Voly(y, pn) = IBy(Y, pn)l denote thevolumeof the Hamming ball of radiupn. Note that since the
volume of a Hamming ball is translation invariaMol,(y, on) = Voly(0, pn). We will need the
following inequalities in the proof of Theorem 8.2.
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Proposition 3.4.Letg> 2,n > 1beintegersandldd < p < 1- %1 be a real. Then the following
inequalities hold:

1. Vok(0, pn) < g"Ha®); and
2. Vol(0, pn) > gHal)-om,

In the next lecture, we will see the proof of Proposifiod 34well as the proof of the “negative”
part of Theoreni 312.
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