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Abstract—We present WiGest: a system that leverages changes
in WiFi signal strength to sense in-air hand gestures around
the user’s mobile device. Compared to related work, WiGest
is unique in using standard WiFi equipment, with no modi-
fications, and no training for gesture recognition. The system
identifies different signal change primitives, from which we
construct mutually independent gesture families. These families
can be mapped to distinguishable application actions. We address
various challenges including cleaning the noisy signals, gesture
type and attributes detection, reducing false positives due to
interfering humans, and adapting to changing signal polarity.
We implement a proof-of-concept prototype using off-the-shelf
laptops and extensively evaluate the system in both an office
environment and a typical apartment with standard WiFi access
points. Our results show that WiGest detects the basic primitives
with an accuracy of 87.5% using a single AP only, including
through-the-wall non-line-of-sight scenarios. This accuracy in-
creases to 96% using three overheard APs. In addition, when
evaluating the system using a multi-media player application,
we achieve a classification accuracy of 96%. This accuracy is
robust to the presence of other interfering humans, highlighting
WiGest’s ability to enable future ubiquitous hands-free gesture-
based interaction with mobile devices.

I. INTRODUCTION

The exponential growth in mobile technologies has reignited
the investigation of novel human-computer interfaces (HCI)
through which users can control various applications. Moti-
vated by freeing the user from specialized devices and lever-
aging natural and contextually relevant human movements,
gesture recognition systems are becoming increasingly popular
as a fundamental approach for providing HCI alternatives.
Indeed, there is a rising trend in the adoption of gesture recog-
nition systems into various consumer electronics and mobile
devices, including smartphones [1], laptops [2], navigation
devices [3], and gaming consoles [4]. These systems, along
with research enhancing them by exploiting the wide range
of sensors available on such devices, generally adopt various
techniques for recognizing gestures including computer vision
[4], inertial sensors [5]–[7], ultra-sonic [1], and infrared (e.g.
on the Samsung S4 phone). While promising, these techniques
experience various limitations such as being tailored for spe-
cific applications, sensitivity to lighting, high installation and
instrumentation overhead, requiring holding the mobile device,
and/or requiring additional sensors to be worn or installed.

With the ubiquity of WiFi-enabled devices and infrastruc-
ture, WiFi-based gesture recognition systems, e.g. [8]–[10],

have recently been proposed to help overcome the above
limitations in addition to enabling users to provide in-air
hands-free input to various applications running on mobile
devices. This is particulary useful in cases when a user’s
hands are wet, dirty, busy, or she is wearing gloves; rendering
touch input difficult. These WiFi-based systems are based on
analyzing the changes in the characteristics of the wireless
signals, such as the received signal strength indicator (RSSI)
or detailed channel state information (CSI), caused by human
motion. However, due to the noisy wireless channel and
complex wireless propagation, these systems either require
calibration of the area of interest or major changes to the
standard WiFi hardware to extract the desired signal features,
therefore limiting the adoption of these solutions using off-the-
shelf components. Moreover, all these systems do not provide
fine-grained control of a specific user mobile device.

This paper presents WiGest, a ubiquitous WiFi-based hand
gesture recognition system for controlling applications run-
ning on off-the-shelf WiFi-equipped devices. WiGest does not
require additional sensors, is resilient to changes within the
environment, does not require training, and can operate in
non-line-of-sight scenarios. The basic idea is to leverage the
effect of the in-air hand motion on the wireless signal strength
received by the device from an access point to recognize
the performed gesture. Figure 1 demonstrates the impact of
some hand motion gestures within proximity of the receiver
on the RSSI values, creating three unique signal states (we
call primitives): a rising edge, a falling edge, and a pause.
WiGest parses combinations of these primitives along with
other parameters, such as the speed and magnitude of each
primitive, to detect various gestures. These gestures, in turn,
can be mapped to distinguishable application actions. Since
WiGest works with a specific user device (e.g. a laptop or
mobile phone), it has the advantage of removing the ambiguity
of the user location relative to the receiver. This helps eliminate
the requirement of calibration and special hardware.

There are several challenges, however, that need to be ad-
dressed to realize WiGest. These challenges include handling
the noisy RSSI values due to multipath interference, medium
contention, and other electromagnetic noise in the wireless
medium; handling the variations of gestures and their attributes
for different humans and even for the same human at different
times; handling interference (i.e. avoiding false positives) due
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Fig. 1: The impact of two hand motion frequencies on the
RSSI. The received signal is composed of three primitives:
rising edge, falling edge, and pause. The five motion repeti-
tions can also be counted.

to the motion of other people within proximity of the user’s
device; and finally be energy-efficient to suit mobile devices.

To address these challenges, WiGest leverages different
signal processing techniques that can preserve signal details
while filtering out the noise and variations in the signal.
In addition, we leverage multiple overheard APs as well
as introduce a unique signal pattern (acting as a preamble)
to identify the beginning of the gesture engagement phase;
this helps counter the effect of interfering humans, increase
robustness, and enhance accuracy. Finally, WiGest energy-
efficiency stems from the fact that detecting the preamble can
be efficiently done based on a simple thresholding approach,
rendering the system idle most of the time. In addition, we use
an efficient implementation of the wavelet transform that has
a linear time complexity in various signal processing modules.

We implement WiGest on off-the-shelf laptops and evaluate
its performance with three different users in a 1300ft2 three
bedroom apartment and a 5600ft2 floor within our engineering
building. Various realistic scenarios are tested covering more
than 1000 primitive actions and gestures each in the presence
of interfering users in the same room as well as other people
moving in the same floor during their daily life.

Our results reveal that WiGest can detect the basic primitives
with an accuracy of 87.5% using a single AP only for
distances up to 26 ft including through-the-wall non-line-of-
sight scenarios. This accuracy increases to 96% using three
overheard APs, which is the typical case for many WiFi
deployment scenarios. In addition, when evaluating the system
using a multi-media player application case study, we achieve
a classification accuracy of 96%. This accuracy is robust to
the presence of other interfering humans.

The rest of the paper is organized as follows. Section II
provides an overview on related work. Sections III and IV
present an overview and the details of the WiGest system
respectively. We evaluate the system in Section V. Finally,
we conclude the paper and provide directions for future work
in Section VI.

II. RELATED WORK

Gesture recognition systems generally adopt various tech-
niques such as computer vision [4], inertial sensors [5], ultra-

sonic [1], and infrared electromagnetic radiation (e.g. on
Samsung S4). While promising, these techniques suffer from
limitations such as sensitivity to lighting, high installation and
instrumentation overhead, demanding dedicated sensors to be
worn or installed, or requiring line-of-sight communication
between the user and the sensor. These limitations promoted
exploiting WiFi, already installed on most user devices and
abundant within infrastructure, for activity and gesture recog-
nition as detailed in this section.

A. WiFi-based Activity Recognition Systems

Device-free activity recognition relying on RSSI fluctua-
tions, or the more detailed channel state information (CSI)
in standard WiFi networks, have emerged as a ubiquitous
solution for presence detection [11]–[22], tracking [23]–[28],
and recognition of human activities [29]–[32]. For activity
recognition systems, RFTraffic [29] introduces a system that
classifies the traffic density scenarios based on the emitted
RF-noise from the vehicles, while [30], [32] can further dif-
ferentiate between vehicles and humans and detect the vehicle
speed. In [33], authors provide localization and detect basic
human activities such as standing and walking, using ambient
FM broadcast signals, or by sensing WiFi RSSI changes within
proximity of a mobile device. In addition, activities conducted
by multiple individuals can be detected simultaneously with
good accuracy utilizing multiple receivers and simple features
and classifier systems [31], which can be further used in
novel application domains, such as automatic indoor semantic
identification [34]–[36].

The solutions described above typically require some prior
form of training, have been tested in controlled environments,
or work in scenarios where human presence is rare (e.g.
intrusion detection), and most importantly, do not detect fine-
grained motions such as hand gestures near mobile devices.
WiGest builds on this foundational work to achieve fine-
grained hand gesture recognition based on RSSI changes
without requiring any training and in typical daily scenarios.

B. RF-based Gesture Recognition Systems

Work in this area represents the most recent efforts to detect
fine-grained mobility and human gestures by leveraging RF
signals. WiVi [9] uses an inverse synthetic aperture radar
(ISAR) technique by treating the motion of a human body
as an antenna array to track the resulting RF beam, thus en-
abling radar-like vision and simple through-wall gesture-based
communication. Finally, WiSee [10] is a fine-grained gesture
recognition system that builds on DopLink [37] and [38] by
exploiting the doppler shift in narrow bands extracted form
wide-band OFDM transmissions to recognize nine different
human gesturers.

While these solutions provide high accuracy, they all require
special hardware in order to employ their solutions. WiGest,
on the other hand, works with off-the-shelf WiFi components,
making it significantly more deployable. Moreover, working
with off-the-shelf components requires dealing with more
challenges in terms of noise and interference sources.
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Fig. 2: WiGest (a) conceptual view and (b) processing components. WiGest has three layers: primitives, gestures, and
applications. The figure shows a typical example for mapping the application actions to different example gestures and
primitives. We note that multiple application actions (e.g. “play” and “fast” forward) can be mapped to the same gesture
with different parameters (e.g., one count for play and more than one count for fast forward).

III. WIGEST CONCEPTUAL OVERVIEW

In this section, we provide a conceptual overview of WiGest
covering the Primitives, Gesture Families, and Application
Actions layers (Figure 2a).

A. Primitives Layer

This layer detects the basic changes in the raw RSSI.
These changes include rising edges caused by moving the
hand away from the device, falling edges caused by moving
the hand towards the device, and pauses caused by holding
the hand still over the device. Higher layer gestures can be
composed by combining these three primitives. There are other
parameters that can be associated with these primitive actions.
In particular, for the rising and falling edges, WiGest can
extract the speed of motion and magnitude of signal change
(Figure 3). To reduce the noise effect, WiGest discretizes the
values of the parameters. Therefore, there are three defined
speeds (high, medium, and low) and two defined magnitudes
(far and near).

B. Gesture Families Layer

Different basic primitives from the lower layer can be
combined to produce higher level gestures (Figure 4). For
example, an up-down hand gesture can be mapped to the prim-
itives falling then rising edges. Since there may be ambiguity
between different hand gestures, we define the concept of a
gesture family, which represents a set of gestures that have
the same sequence of primitives. For example, as shown in
Figure 2a, all up-down, right-left and left-right hand gestures

-39

-38

-37

-36

-35

 0  2  4  6  8  10  12  14  16  18

R
S

S
I 

d
B

m

Time in Seconds

Slow Fast

(a) Hand motion speed effect:
The slower the speed, the slower
the RSSI change.

-41

-40

-39

-38

-37

-36

-35

-34

 0  1  2  3  4  5  6  7  8  9  10
R

S
S

I 
d
B

m

Time in Seconds

Far

Near

(b) Hand motion distance ef-
fect. The higher the distance, the
higher the change in RSSI.

Fig. 3: Parameters associated with raw signal primitives.

(a) Right-left (b) Up-down (c) Infinity (d) Open-close

Fig. 4: Some gesture sketches detected by WiGest.

have the same effect on the signal strength and hence the
same primitives sequence of a falling then rising edge. Gesture
families give flexibility to the developers to choose the best
gesture that fits their applications from a certain gesture family.
Similar to the basic primitives, gestures can have associated
attributes. Specifically, the count of the gesture repetition (e.g.
how many consecutive up-down gestures) and the frequency
(how fast the repetition is performed) are two attributes that
can be associated with the gestures (Figure 1b).

2015 IEEE Conference on Computer Communications (INFOCOM)

1474



C. Application Actions Layer
This layer is where each application maps its actions to

different gestures. Typically, one action is mapped to one
gesture family and the developer can pick one or more gestures
from the same family to represent an action. As an example,
for a media player application (Figure 2) a “play” action can
be performed with a right-movement hand gesture while a
“volume up” action can be mapped to moving the hand up. The
hand movement speed can be mapped to the rate of volume
change.

In the next section, we give the details of extracting these
different semantics and the associated challenges.

IV. THE WIGEST SYSTEM

In this section, we discuss the processing flow of our
system depicted in Figure 2b and address the associated
challenges. This flow includes the three main stages that map
to the different semantic layers: Primitives Extraction, Gesture
Identification, and Action Mapping.

A. Primitives Extraction
The goal of this stage is to extract the basic primitives (rising

edges, falling edges, and pauses) from the raw signal. Due to
the noisy wireless signal, this stage starts by a noise reduction
step using the Discrete Wavelet Transform (DWT), followed
by an edge extraction and primitives detection step. We start
with a brief background on the DWT. Then we give the details
of the different submodules.

1) Discrete Wavelet Transform: Wavelet Transform pro-
vides a time-frequency representation of a signal. It has two
main advantages: (a) an optimal resolution both in the time and
the frequency domains; and (b) it achieves fine-grained multi-
scale analysis [39]. In Discrete Wavelet Transform (DWT), the
generic step splits the signal into two parts: an approximation
coefficient vector and a detail coefficient vector. This splitting
is applied recursively a number of steps (i.e. levels), J , to
the approximation coefficients vector only to obtain finer
details from the signal. At the end, DWT produces a coarse
approximation projection (scaling) coefficients α(J), together
with a sequence of finer detail projection (wavelet) coefficients
β(1), β(2), ..., β(J). The DWT coefficients in each level can be
computed using the following equations:

α
(J)
k = 〈xn, g(J)n−2Jk〉n =

∑
n∈Z

xn g
(J)

n−2Jk, J ∈ Z (1)

β
(`)
k = 〈xn, h(`)n−2lk〉n =

∑
n∈Z

xn h
(`)

n−2`k, ` ∈ {1, 2, ..., J}

(2)
where xn is the nth input point, 〈.〉 is the dot product

operation, and g’s and h’s are two sets of discrete orthogonal
functions called the wavelet basis (we used the Haar basis
functions in our system). The inverse DWT is given by

xn =
∑
k∈Z

α
(J)
k g

(J)

n−2Jk +
J∑

`=1

∑
k∈Z

β
(`)
k h

(`)

n−2`k (3)
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Fig. 5: Detecting frequencies of interest dynamically using
wavelet transform. The dashed lines in the spectrogram map
to the two frequencies of interest.

2) Noise Reduction: Due to complex wireless propagation
and interaction with surrounding objects, RSSI values at the
receiver are noisy. This noise can add false edges and affect
WiGest accuracy and robustness. Therefore, to increase WiGest
quality, we leverage a wavelet-based denoising method [40].
Wavelet denoising consists of three stages: decomposition,
thresholding detail coefficients, and reconstruction.

In decomposition, DWT is recursively applied to break
the signal into high-frequency coefficients (details) and low-
frequency coefficients (approximations) at different frequency
levels. Thresholding is then applied to the wavelet detail
coefficients to remove their noisy part. The threshold is chosen
dynamically, based on minimizing the Stein unbiased risk
estimate (SURE), under the assumption of Gaussian noise
[40]. Finally, reconstruction of the denoised signal occurs by
combining the coefficients of the last approximation level with
all thresholded details.

Wavelet denosing has the advantage of being computation-
ally efficient (linear time complexity) to fit on mobile devices.
In addition, it does not make any particular assumptions about
the nature of the signal, and permits discontinuities in the
signal [41]. Moreover, we leverage DWT in other system
functionalities, allowing code sharing for better efficiency.

3) Edge Extraction and Primitives Detection: The main
effect of the human hand motions on the received signal
(detection primitives) are either rising edges, falling edges,
or pauses. The place of these primitives need to be defined in
time. However, since the human hand motion speed may be
different from one person to another or for the same person at
different times, we need a technique that can provide variable
frequency resolution. Therefore, we use wavelet analysis for
edge detection in WiGest. Compared to other techniques, e.g.
the Fourier transform, Wavelet analysis provides both time
and frequency locality at different resolutions as well as being
computationally efficient.

Figure 5 shows the spectrogram of a denoised signal
containing two different hand motion velocities. The figure
shows that Wavelet transform can capture/localize the two
frequencies of motion (the two dashed lines in the figure)
using simple 2D local maximum extraction technique. This
technique is then utilized in the DWT process to determine
the levels of interest that are used in the edge detection stage.
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Fig. 6: Different hand gestures, their detected edges, and spectrograms. The first row is the denoised RSSI signals. The
second row shows the fifth level details coefficients of the denoising module used in edge detection. The third row shows the
spectrogram of the signal only used to determine the frequency of interest level (not for distinguishing gestures.)

Based on the DWT theory, a rising edge causes a local
minima peak and a falling edge causes a local maxima peak
in the detailed coefficients as shown in the second row of
Figure 6. A pause is detected as a stable RSSI value (RSSI
variance within a threshold) for a certain minimum time (0.5
second in our system). Therefore, using this module, any
input signal can be translated into a set of raising edges,
falling edges, and/or pauses. Figure 6 shows some examples of
different hand motion gestures and the detected edge positions
as well as their spectrograms. The figure also shows that the
edge locations and frequency can be accurately extracted.

We note that WiGest can use multiple overheard APs to
increase the system accuracy and resilience to noise. In this
case, a majority vote on the detected primitive is used to fuse
the detection of the different APs.

4) Primitives attributes: After extracting edges, each edge
can be labeled with two parameters: speed and magnitude.
Based on the edge duration, there are three possible speeds:
high (edge duration < 0.75 sec), medium (0.75 sec < edge
duration < 1.5 sec), or low (edge duration > 1.5 sec). On
the other hand, the distance value is also discretized into two
values, high (more than 0.55 ft above the receiver) and low
(less than 0.55 ft above the receiver), which is determined
based on a threshold applied to the RSSI. Since the amplitude
of the signal change is relative to the original signal level (i.e.
a strong signal will lead to a lager change with the user hand
movement and vice versa), we base the threshold value on the
change of the start of the signal as we describe in the signal
segmentation section below.

B. Gesture Identification

The goal of this processing stage is to extract the different
gestures and their attributes (frequency and count). This is
performed through two steps: segmentation and identifica-
tion/matching.

1) Segmentation: One important question for the correct
operation of WiGest is when to know that the user is generating
a gesture. This helps avoid false gestures generated by other
actions/noise in the environment from nearby users and also

leads to energy-efficiency. WiGest answers this question by
using a special preamble that is hard to confuse with other
actions in the environment. Without this preamble, the system
refrains from interpreting gestures. The preamble contains two
states: a drop in the input signal values and then two up-down
signals. This is equivalent to holding the hand over the receiver
and then making two up-down gestures. The first stage is
detected by a simple and efficient thresholding operation. So in
real-time, the default case is that the preamble extraction mod-
ule only searches for a drop in the RSSI values. If detected,
it moves to the second stage and searches for two consecutive
up-down motions, which is equivalent to searching for four
consecutive peaks in the detailed components of the DWT
(computed in linear time). Once the preamble is detected,
the communication channel begins between the device and
the user, and the system scans for various gestures based
on the primitives extracted in the previous section. Gesture
recognition is terminated after a silence period preset by the
user, returning to the preamble scanning phase.

In some cases, due to the complex wireless propagation
environment, flipping between rising and falling edges may
occur. To compensate for this, WiGest leverages the preamble.
Specifically, the direction of the change of the first state
(typically expected to be a drop in signal strength) determines
whether the signal should be flipped or not. WiGest also
leverages the preamble to determine the threshold magnitude
(high/low) and motion frequency. Essentially, the extracted
features from the predefined preamble help the system adapt
to different users and different environments.

2) Pattern Encoding and Matching/Gesture Identification:
Once the gesture boundary is determined and primitives are
extracted, we convert the primitives to a string sequence: rising
edges to positive signs, falling edges to negative signs, and
pauses to zeros. The extracted string pattern is then compared
with gesture templates to find the best match, as well as extract
the count and frequency attributes (i.e. number of gesture
repetitions per unit time).
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C. Action Mapping

This is a direct mapping step based on the application
semantics. The developer determines which application ac-
tions are mapped to which gesture families. In addition, the
attributes of the gesture are passed to the application for further
processing. For example, the frequency attribute can be used
to determine how fast the character should run in a game, the
count parameter can determine how far we should go in the
list of choices, etc. Note that multiple actions can be mapped
to the same gesture family if they have multiple attributes. For
example, in a media player application, “play” can be mapped
to a right-hand gesture, while fast forward can be mapped to
a double right-hand gesture.
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V. EVALUATION

In this section, we analyze the performance of WiGest in
two typical environments: (a) A typical apartment (Figure 7a)
covering a 34×39 ft2 area and consisting of a living room
connected to the dining area, three bedrooms, kitchen, and a
bathroom. The walls have a thickness of 0.5ft and the doors are
made of wood and have a thickness of 0.16ft. (b) The second
floor of an engineering building at our campus (Figure 7b)
which contains 12 rooms connected by a large corridor and
covers an area of 115×49 ft2.

In both environments, an HP EliteBook laptop is used as
a receiver with a sampling rate of 50 Hz controlled by the
user using WiGest. The apartment had two Cisco Linksys
X2000 APs while the engineering building has three Netgear
N300 APs installed in the experiment floor. We experimented
with three different users producing more than 1000 primitive
actions and hundreds of gestures including scenarios with
seven interfering users in the same room, in addition to other
people moving in the same floor during their daily life.

In addition to evaluating WiGest at different locations uni-
formly distributed over the two environments, we extensively
evaluate it in three different scenarios shown in Figure 8: 1)
No-wall/Line-of-sight: The laptop and AP are in the same
room. 2) Through-one-wall: The laptop and AP are placed in
adjacent rooms separated by one wall. 3) Through-two-walls:
The laptop and AP are placed in two different rooms separated
by a corridor. Thus the signal penetrates two walls.
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Fig. 11: Impact of distance on edge detection accuracy. The figure also shows the average RSSI value at each distance.
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Fig. 12: Primitives Layer evaluation. The magnitude parameter is discretized to two values: low (distance less than 0.5ft and
high for distance above 0.6ft above the mobile device. We also discretize the speed to three values: high (edge duration < 0.75
sec), medium (0.75 sec < edge duration between < 1.5 sec), or low (edge duration > 1.5 sec).

We first evaluate the accuracy of detecting primitives and
gestures under these three scenarios with different realistic
settings. Then we evaluate WiGest’s performance at different
locations uniformly distributed over both environments. Unless
otherwise specified, all results are averaged over both test
environments.

A. Primitives Layer Evaluation
1) Impact of Orientation: We first evaluate edge detection

performance at four orientations of the user relative to the
device (East, West, North, and South) in the no-wall scenario
(Figure 8). The distance between the mobile device and the
AP is set to 14ft. The results in Figure 9 show that the
overall primitive detection accuracy of WiGest averaged over
all different orientations is 90.5%. The highest accuracy is
achieved in the West orientation while the lowest is achieved
in the East orientation. This is intuitive because in the East
orientation, the human body blocks the line-of-sight between
the device and the AP causing two negative effects: First, it
produces noise in the received signal. Second, it reduces the
received RSSI due to attenuation through the human body;
stronger RSSI leads to better accuracy as we quantify later.
We note that accuracy can be further enhanced by combining
the RSSI from multiple APs as we show in the next section.

2) Impact of Multiple APs: Figure 10 shows the effect
of using more than one AP on primitives detection accuracy
averaged over different orientations. This experiment is per-
formed in the engineering building due to the abundance of

APs there. The overheard APs are over different floors in the
building. A majority vote between all APs is used to select the
correct primitive. The figure shows that increasing the number
of APs to three increases the system accuracy to 96%, and
reaches 100% when the device hears seven APs. Given the
dense deployment of WiFi APs, this highlights that WiGest
can achieve robust performance in the many cases.

3) Impact of Distance: We investigate the relation between
WiGest’s accuracy and the coverage distance of an AP for the
scenarios in Figure 8. In this experiment, the distance between
the device and AP varies and each primitive is repeated 25
times at each location for different orientations. Figure 11
shows that the overall primitives detection accuracy decreases
when increasing the distance between the device and AP. This
is because stronger RSSIs lead to higher SNR and hence
better accuracy. In other words, a weaker signal leads to
lower changes in the signal strength in response to the hand
movement, leading to less sensitivity. WiGest, however, can
still achieve more than 87% accuracy for distances up to
26ft. This can be further enhanced by combining RSSIs from
different APs as shown in the previous section.

4) Individual primitives and attributes detection accuracy:
Finally, we evaluate the true positive (1- false negative) and
false positive detection rate for the three primitives in addition
to correctly identifying the primitive’s speed and distance
parameters. The distance between the mobile device and the
AP is set to 14ft. The collected dataset contains 350 samples
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Down-Up 0.94 0 0 0 0 0.06
Infinity 0.07 0.83 0.04 0 0.03 0.03
Up-Down 0 0 1 0 0 0
Up-Pause-Down 0 0 0.05 0.9 0 0.05
Down-Pause-Up 0 0 0 0 0.96 0.04

TABLE I: Confusion matrix for the different gesture families.
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Fig. 13: Gesture families parameters detection evaluation.

of each primitive for a total of 1050 samples. Figure 12
shows the results. The figure shows that the different WiGest
processing modules lead to high detection accuracy with a high
true positive rate and low false positive rate concurrently. In
addition, WiGest can detect the primitives’ attributes with high
accuracy, allowing it to be used in different applications.

B. Gesture Families Layer Evaluation

We now evaluate the detection accuracy of the gesture
families and their associated parameters (count and frequency).
We consider the seven gesture families in Figure 2a.

1) Gesture detection: A user performs a total of 192
gestures at a distance of 14ft from the AP for the four different
orientations relative to the mobile device using the AP the
mobile device is associated with. The resulting confusion
matrix is shown in Table I. Overall, these results show that
WiGest can detect the gestures with a high accuracy of 92.6%.
This accuracy is higher than the primitives detection accuracy
due to the processing we apply on gestures as described in
Section IV-B2. This can be further increased by leveraging
more APs.

2) Gesture attributes detection accuracy: Figure 13 shows
the accuracy of detecting various gesture parameters. The
figure shows that WiGest can accurately detect the exact count
96% of the time. This percentage increases to 98% for a count
error of one. Similarly, it can detect the repetition frequency
of a gesture within one second 93% of the time.

C. Whole-home Gesture Recognition Case Study

We evaluate the system in our apartment environment using
a multi-media player application. Both APs installed in the
apartment are used, and since there is no majority vote here,
the AP with the strongest signal is used. We evaluate the multi-
media player action detection performance at eight locations
uniformly distributed over the apartment and covering different
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TABLE II: Confusion matrix for the media player application
actions.

scenarios (line-of-sight, through-one-wall, and through-two-
walls). At each location, the user performs the seven actions
shown in Figure 2a. Each action is performed 20 times at
each location for a total of 1120 actions. Table II shows the
confusion matrix for the seven gestures across all locations.
The matrix shows that the overall classification accuracy over
all application actions is 96%. This accuracy shows WiGest’s
ability to use wireless signals to extract rich gestures.

VI. CONCLUSION

We presented WiGest, a robust gesture recognition system
that uses WiFi RSSI’s to detect human hand motions around
a user device. WiGest does not require any modification to the
available wireless equipment or any extra sensors, and does
not require any training prior to deployment. We addressed
system challenges including signal denoising, gesture prim-
itives extraction, reducing the false positive rate of gesture
detection, and adapting to changing signal polarity caused by
environmental interference. WiGest’s energy-efficiency stems
from using a preamble that is easy to detect based on a simple
thresholding approach as well as using the wavelet transform
that works in linear time in its various processing modules.

Extensive evaluation of WiGest in two environments shows
that it can detect basic primitives with an accuracy of 87.5%
using a single AP for distances up to 26 ft including through-
the-wall non-line-of-sight scenarios. This accuracy increases
to 96% using three overheard APs, which is the typical
case for many urban WiFi scenarios. In addition, WiGest can
achieve a classification accuracy of 96% for the application
actions. These results are robust to the presence of other
interfering humans, highlighting WiGest’s ability for enabling
future ubiquitous hands-free gesture-based interaction with
mobile devices.

Currently, we are extending the system in multiple direc-
tions including leveraging detailed channel state information
(CSI) from the physical layer to further enhance accuracy and
generate finer grained gesture families, leveraging other ubiq-
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uitous wireless technologies, such as cellular and bluetooth,
among others.
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