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ABSTRACT

The problem of overbuffering in the current Internet (termed
as bufferbloat) has drawn the attention of the research com-
munity in recent years. Cellular networks keep large buffers
at base stations to smooth out the bursty data traffic over
the time-varying channels and are hence apt to bufferbloat.
However, despite their growing importance due to the boom
of smart phones, we still lack a comprehensive study of
bufferbloat in cellular networks and its impact on TCP per-
formance. In this paper, we conducted extensive measure-
ment of the 3G/4G networks of the four major U.S. carriers
and the largest carrier in Korea. We revealed the severity
of bufferbloat in current cellular networks and discovered
some ad-hoc tricks adopted by smart phone vendors to mit-
igate its impact. Our experiments show that, due to their
static nature, these ad-hoc solutions may result in perfor-
mance degradation under various scenarios. Hence, a dy-
namic scheme which requires only receiver-side modification
and can be easily deployed via over-the-air (OTA) updates
is proposed. According to our extensive real-world tests, our
proposal may reduce the latency experienced by TCP flows
by 25% ∼ 49% and increase TCP throughput by up to 51%
in certain scenarios.
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C.2.2 [Computer-Communication Networks]: Network
Protocols
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1. INTRODUCTION
Bufferbloat, as termed by Gettys [10], is a phenomenon

where oversized buffers in the network result in extremely
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Figure 1: Bufferbloat has been widely observed in
the current Internet but is especially severe in cel-
lular networks, resulting in up to several seconds of
round trip delay.

long delay and other performance degradation. It has been
observed in different parts of the Internet, ranging from
ADSL to cable modem users [5, 17, 26]. Cellular networks
are another place where buffers are heavily provisioned to
accommodate the dynamic cellular link (Figure 1). How-
ever, other than some ad-hoc observations [24], bufferbloat
in cellular networks has not been studied systematically.

In this paper, we carried out extensive measurements over
the 3G/4G networks of all four major U.S. carriers (AT&T,
Sprint, T-Mobile, Verizon) as well as the largest cellular car-
rier in Korea (SK Telecom). Our experiments span more
than two months and consume over 200GB of 3G/4G data.
According to our measurements, TCP has a number of per-
formance issues in bufferbloated cellular networks, includ-
ing extremely long delays and sub-optimal throughput. The
reasons behind such performance degradation are two-fold.
First, most of the widely deployed TCP implementations
use loss-based congestion control where the sender will not
slow down its sending rate until it sees packet loss. Sec-
ond, most cellular networks are overbuffered to accommo-
date traffic burstiness and channel variability [20]. The ex-
ceptionally large buffer along with link layer retransmission
conceals packet losses from TCP senders. The combination
of these two facts leads to the following phenomenon: the
TCP sender continues to increase its sending rate even if it
has already exceeded the bottleneck link capacity since all
of the overshot packets are absorbed by the buffers. This
results in up to several seconds of round trip delay. This
extremely long delay did not cause critical user experience
problems today simply because 1) base stations typically
has separate buffer space for each user [20] and 2) users
do not multitask on smart phones very often at this point.
This means only a single TCP flow is using the buffer space.
If it is a short-lived flow like Web browsing, queues will
not build up since the traffic is small. If it is a long-lived
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flow like downloading a file, long queues will build up but
users hardly notice them since it is the throughput that mat-
ters rather than the delay. However, as the smart phones
become more and more powerful (e.g., several recently re-
leased smart phones are equipped with quad-core processors
and 2GB of memory), users are expected to perform multi-
tasking more often. If a user is playing an online game and
at the same time downloading a song in the background,
severe problem will appear since the time-sensitive gaming
traffic will experience huge queuing delays caused by the
background download. Hence, we believe that bufferbloat
in 3G/4G networks is an important problem that must be
addressed in the near future.

This problem is not completely unnoticed by today’s smart
phone vendors. Our investigation into the open source An-
droid platform reveals that a small untold trick has been
applied to mitigate the issue: the maximum TCP receive
buffer size parameter (tcp rmem max) has been set to a rel-
atively small value although the physical buffer size is much
larger. Since the advertised receive window (rwnd) cannot
exceed the receive buffer size and the sender cannot send
more than what is allowed by the advertised receive win-
dow, the limit on tcp rmem max effectively prevents TCP
congestion window (cwnd) from excessive growth and con-
trols the RTT (round trip time) of the flow within a reason-
able range. However, since the limit is statically configured,
it is sub-optimal in many scenarios, especially considering
the dynamic nature of the wireless mobile environment. In
high speed long distance networks (e.g., downloading from
an oversea server over 4G LTE (Long Term Evolution) net-
work), the static value could be too small to saturate the
link and results in throughput degradation. On the other
hand, in small bandwidth-delay product (BDP) networks,
the static value may be too large and the flow may experi-
ence excessively long RTT.

There are many possible ways to tackle this problem, rang-
ing from modifying TCP congestion control algorithm at the
sender to adopting Active Queue Management (AQM) at
the base station. However, all of them incur considerable
deployment cost. In this paper, we propose dynamic receive
window adjustment (DRWA), a light-weight, receiver-based
solution that is cheap to deploy. Since DRWA requires mod-
ifications only on the receiver side and is fully compatible
with existing TCP protocol, carriers or device manufactur-
ers can simply issue an over-the-air (OTA) update to smart
phones so that they can immediately enjoy better perfor-
mance even when interacting with existing servers.

DRWA is similar in spirit to delay-based congestion con-
trol algorithms but runs on the receiver side. It modifies
the existing receive window adjustment algorithm of TCP
to indirectly control the sending rate. Roughly speaking,
DRWA increases the advertised window when the current
RTT is close to the minimum RTT we have observed so far
and decreases it when RTT becomes larger due to queuing
delay. With proper parameter tuning, DRWA could keep
the queue size at the bottleneck link small yet non-empty
so that throughput and delay experienced by the TCP flow
are both optimized. Our extensive experiments show that
DRWA reduces the RTT by 25% ∼ 49% while achieving
similar throughput in ordinary scenarios. In large BDP net-
works, DRWA can achieve up to 51% throughput improve-
ment over existing implementations.

In summary, the contributions of this paper include:

Internet
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Figure 2: Our measurement framework spans across
the globe with servers and clients deployed in vari-
ous places in U.S. and Korea using the cellular net-
works of five different carriers.

• We conducted extensive measurements in a range of
cellular networks (EVDO, HSPA+, LTE) across vari-
ous carriers and characterized the bufferbloat problem
in these networks.

• We anatomized the TCP implementation in state-of-
the-art smart phones and revealed the limitation of
their ad-hoc solution to the bufferbloat problem.

• We proposed a simple and immediately deployable so-
lution that is experimentally proven to be safe and
effective.

The rest of the paper is organized as follow. Section 2 in-
troduces our measurement setup and highlights the severity
of bufferbloat in today’s 3G/4G networks. Section 3 then
investigates the impact of bufferbloat on TCP performance
and points out the pitfalls of high speed TCP variants in
cellular networks. The abnormal behavior of TCP in smart
phones is revealed in Section 4 and its root cause is located.
We then propose our solution DRWA in Section 5 and eval-
uate its performance in Section 6. Finally, alternative so-
lutions and related work are discussed in Section 7 and we
conclude our work in Section 8.

2. OBSERVATION OF BUFFERBLOAT IN

CELLULAR NETWORKS
Bufferbloat is a phenomenon prevalent in the current In-

ternet where excessive buffers within the network lead to
exceptionally large end-to-end latency and jitter as well as
throughput degradation. With the recent boom of smart
phones and tablets, cellular networks become a more and
more important part of the Internet. However, despite the
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Figure 3: We observed exceptionally fat pipes across
the cellular networks of five different carriers. We
tried three different client/server locations under
both good and weak signal case. This shows the
prevalence of bufferbloat in cellular networks. The
figure above is a representative example.

abundant measurement studies of the cellular Internet [4,
18, 20, 23, 14], the specific problem of bufferbloat in cellular
networks has not been studied systematically. To obtain a
comprehensive understanding of this problem and its impact
on TCP performance, we have set up the following measure-
ment framework which is used throughout the paper.

2.1 Measurement Setup
Figure 2(a) gives an overview of our testbed. We have

servers and clients deployed in various places in U.S. and
Korea so that a number of scenarios with different BDPs
can be tested. All of our servers run Ubuntu 10.04 (with
2.6.35.13 kernel) and use its default TCP congestion control
algorithm CUBIC [11] unless otherwise noted. We use sev-
eral different phone models on the client side, each working
with the 3G/4G network of s specific carrier (Figure 2(b)).
The signal strength during our tests ranges from -75dBm to
-105dBm so that it covers both good signal condition and
weak signal condition. We develop some simple applications
on the client side to download data from the server with
different traffic patterns (short-lived, long-lived, etc.). The
most commonly used traffic pattern is long-lived TCP flow
where the client downloads a very large file from the server
for 3 minutes (the file is large enough so that the down-
load never finishes within 3 minutes). Most experiments
have been repeated numerous times for a whole day with a
one-minute interval between each run. That results in more
than 300 samples for each experiment based on which we
calculate the average and the confidence interval.

For the rest of the paper, we only consider the perfor-
mance of the downlink (from base station to mobile station)
since it is the most common case. We leave the measure-
ment of uplink performance as our future work. Since we
are going to present a large number of measurement results
under various conditions in this paper, we provide a table
that summaries the setup of each experiment for the reader’s
convenience. Please refer to Table 1 in Appendix A.

2.2 Bufferbloat in Cellular Networks
The potential problem of overbuffering in cellular net-

works was pointed out by Ludwig et al. [21] as early as 1999
when researchers were focusing on GPRS networks. How-
ever, overbuffering still prevails in today’s 3G/4G networks.
To estimate the buffer space in current cellular networks,
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Figure 4: We verified that the queue is built up at
the very first IP hop (from the mobile client).

we set up the following experiment: we launch a long-lived
TCP flow from our server to a Linux laptop (Ubuntu 10.04
with 2.6.35.13 kernel) over the 3G networks of four major
U.S. carriers. By default, Ubuntu sets both the maximum
TCP receive buffer size and the maximum TCP send buffer
size to a large value (greater than 3MB). Hence, the flow
will never be limited by the buffer size of the end points.
Due to the closed nature of cellular networks, we are unable
to know the exact queue size within the network. Instead,
we measure the size of packets in flight on the sender side
to estimate the buffer space within the network. Figure 3
shows our measurement results. We observed exceptionally
fat pipes in all four major U.S. cellular carriers. Take Sprint
EVDO network for instance. The peak downlink rate for
EVDO is 3.1 Mbps and the observed minimum RTT (which
approximates the round-trip propagation delay) is around
150ms. Therefore, the BDP of the network is around 58KB.
But as the figure shows, Sprint is able to bear more than
800KB of packets in flight!

As a comparison, we ran a similar experiment of a long-
lived TCP flow between a client in Raleigh, U.S. and a server
in Seoul, Korea over the campus WiFi network. Due to the
long distance of the link and the ample bandwidth of WiFi,
the corresponding pipe size is expected to be large. However,
according to Figure 3, the size of in-flight packets even in
such a large BDP network is still much smaller than the ones
we observed in cellular networks.

We extend the measurement to other scenarios in the field
to verify that the observation is universal in current cellular
networks. For example, we have clients and servers in vari-
ous locations over various cellular networks in various signal
conditions (Table 1). All the scenarios prove the existence
of extremely fat pipes similar to Figure 3.

To further confirm that the bufferbloat is within the cellu-
lar segment rather than the backbone Internet, we designed
the following experiment to locate where the long queue is
built up. We use Traceroute on the client side to measure the
RTT of each hop along the path to the server and compare
the results with or without a background long-lived TCP
flow. If the queue is built up at hop x, the queuing delay
should increase significantly at that hop when background
traffic is in place. Hence, we should see that the RTTs before
hop x do not differ much no matter the background traffic is
present or not. But the RTTs after hop x should have a no-
table gap between the case with background traffic and the
case without. The results shown in Figure 4 demonstrate
that the queue is built up at the very first hop. Note that
there could be a number of components between the mo-
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Figure 5: RRC state transition only affects short-
lived TCP flows with considerable idle periods in
between (> 7s) but does not affect long-lived flows.

bile client and the first IP hop (e.g., RNC, SGSN, GGSN,
etc.). It may not be only the wireless link between the mo-
bile station and the base station. Without administrative
access, we are unable to diagnose the details within the car-
rier’s network but according to [20] large per-user buffer are
deployed at the base station to absorb channel fluctuation.

Another concern is that the extremely long delays we ob-
served in cellular networks are due to Radio Resource Con-
trol (RRC) state transitions [1] rather than bufferbloat. We
set up the following experiment to demonstrate that these
two problems are orthogonal. We repeatedly ping our server
from the mobile station with different intervals between con-
secutive pings. The experiment has been carried out for a
whole day and the average RTT of the ping is calculated.
According to the RRC state transition diagram, if the in-
terval between consecutive pings is long enough, we should
observe a substantially higher RTT due to the state promo-
tion delay. By varying this interval in each run, we could ob-
tain the threshold that would trigger RRC state transition.
As shown in Figure 5, when the interval between consecutive
pings is beyond 7 seconds (specific threshold depends on the
network type and the carrier), there is a sudden increase in
RTT which demonstrates the state promotion delay. How-
ever, when the interval is below 7 seconds, RRC state tran-
sition does not seem to affect the performance. Hence, we
conclude that RRC state transition may only affect short-
lived TCP flows with considerable idle periods in between
(e.g., Web browsing), but does not affect long-lived TCP
flows we were testing since their packet intervals are typi-
cally at millisecond scale. When the interval between pack-
ets is short, the cellular device should remain in CELL DCH
state and state promotion delays would not contribute to the
extremely long delays we observed.

3. TCP PERFORMANCE OVER BUFFER-

BLOATED CELLULAR NETWORKS
Given the exceptionally large buffer size in cellular net-

works as observed in Section 2, in this section we investigate
its impact on TCP’s behavior and performance. We carried
out similar experiments to Figure 3 but observed the con-
gestion window size and RTT of the long-lived TCP flow
instead of packets in flight. As Figure 6 shows, TCP con-
gestion window keeps probing even if its size is far beyond
the BDP of the underlying network. With so much over-
shooting, the extremely long RTT (up to 10 seconds!) as
shown in Figure 6(b) is not surprising.
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Figure 6: TCP congestion window grows way be-
yond the BDP of the underlying network due to
bufferbloat. Such excessive overshooting leads to
extremely long RTT.

In the previous experiment, the server used CUBIC as its
TCP congestion control algorithm. However, we are also
interested in the behaviors of other TCP congestion con-
trol algorithms under bufferbloat. According to [32], a large
portion of the Web servers in the current Internet use high
speed TCP variants such as BIC [30], CUBIC [11], CTCP
[27], HSTCP [7] and H-TCP [19]. How these high speed
TCP variants would perform in bufferbloated cellular net-
works as compared to less aggressive TCP variants like TCP
NewReno [8] and TCP Vegas [2] is of great interest.

Figure 7 shows the cwnd and RTT of TCP NewReno, Ve-
gas, CUBIC, BIC, HTCP and HSTCP under AT&T HSPA+
network. We left CTCP out of the picture simply because we
are unable to know its internal behavior due to the closed na-
ture of Windows. As the figure shows, all the loss-based high
speed TCP variants (CUBIC, BIC, HTCP, HSTCP) over-
shoot more often than NewReno. These high speed variants
were originally designed for efficient probing of the available
bandwidth in large BDP networks. But in bufferbloated cel-
lular networks, they only make the problem worse by con-
stant overshooting. Hence, the bufferbloat problem adds a
new dimension in the design of an efficient TCP congestion
control algorithm.

In contrast, TCP Vegas is resistive to bufferbloat as it uses
a delay-based congestion control algorithm that backs off as
soon as RTT starts to increase. This behavior prevents cwnd
from excessive growth and keeps the RTT at a low level.
However, delay-based TCP congestion control has its own
problems and is far from a perfect solution to bufferbloat.
We will further discuss this aspect in Section 7.
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Figure 7: All the loss-based high speed TCP variants (CUBIC, BIC, HTCP, HSTCP) suffer from the
bufferbloat problem more severely than NewReno. But TCP Vegas, a delay-based TCP variant, is resis-
tive to bufferbloat.

4. CURRENT TRICK BY SMART PHONE

VENDORS AND ITS LIMITATION
The previous experiments used a Linux laptop with mobile

broadband USB modem as the client. We have not looked
at other platforms yet, especially the exponentially growing
smart phones. In the following experiment, we explore the
behavior of different TCP implementations in various desk-
top (Windows 7, Mac OS 10.7, Ubuntu 10.04) and mobile
operating systems (iOS 5, Android 2.3, Windows Phone 7)
over cellular networks.
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Figure 8: The behavior of TCP in various platforms
over AT&T HSPA+ network exhibits two patterns:
“flat TCP” and “fat TCP”.

Figure 8 depicts the evolution of TCP congestion win-
dow when clients of various platforms launch a long-lived
TCP flow over AT&T HSPA+ network. To our surprise,
two types of cwnd patterns are observed: “flat TCP” and
“fat TCP”. Flat TCP, such as observed in Android phones,
is the phenomenon where the TCP congestion window grows
to a constant value and stays there until the session ends.
On the other hand, fat TCP, such as observed in Windows
Phone 7, is the phenomenon that packet loss events do not
occur until the congestion window grows to a large value far
beyond the BDP. Fat TCP can easily be explained by the
bufferbloat in cellular networks and the loss-based conges-
tion control algorithm. But the abnormal flat TCP behavior
caught our attention and revealed an untold story of TCP
over cellular networks.

4.1 Understanding the Abnormal Flat TCP
How could the TCP congestion window stay at a constant

value? The static cwnd first indicates that no packet loss
is observed by the TCP sender (otherwise the congestion
window should have decreased multiplicatively at any loss
event). This is due to the large buffers in cellular networks
and its link layer retransmission mechanism as discussed ear-
lier. Measurement results from [14] also confirm that cellular
networks typically experience close-to-zero packet loss rate.

If packet losses are perfectly concealed, the congestion
window may not drop but it will persistently grow as fat
TCP does. However, it unexpectedly stops at a certain
value and this value is different for each cellular network
or client platform. Our inspection into the TCP implemen-
tation in Android phones (since it is open-source) reveals
that the value is determined by the tcp rmem max param-
eter that specifies the maximum receive window advertised
by the Android phone. This gives the answer to flat TCP be-
havior: the receive window advertised by the receiver crops
the congestion windows in the sender. By inspecting var-
ious Android phone models, we found that tcp rmem max
has diverse values for different types of networks (refer to
Table 2 in Appendix B for some sample settings). Generally
speaking, larger values are assigned to faster communica-
tion standards (e.g., LTE). But all the values are statically
configured.

To understand the impact of such static settings, we com-
pared the TCP performance under various tcp rmem max
values in AT&T HSPA+ network and Verizon LTE network
in Figure 9. Obviously, a larger tcp rmem max allows the
congestion window to grow to a larger size and hence leads to
higher throughput. But this throughput improvement will
flatten out once the link is saturated. Further increase of
tcp rmem max brings nothing but longer queuing delay and
hence longer RTT. For instance, when downloading from
a nearby server, the RTT is relatively small. In such small
BDP networks, the default values for both HSPA+ and LTE
are large enough to achieve full bandwidth utilization as
shown in Figure 9(a). But they trigger excessive packets
in flight and result in unnecessarily long RTT as shown in
Figure 9(b). This demonstrates the limitation of static pa-
rameter setting: it mandates one specific trade-off point in
the system which may be sub-optimal for other applications.
Two realistic scenarios are discussed in the next subsection.
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Figure 9: Throughput and RTT performance of a long-lived TCP flow in a small BDP network under different
tcp rmem max settings. For this specific environment, 110208 may work better than the default 262144 in
AT&T HSPA+ network. Similarly, 262144 may work better than the default 484848 in Verizon LTE network.
However, the optimal value depends on the BDP of the underlying network and is hard to be configured
statically in advance.

4.2 Impact on User Experience
Web Browsing with Background Downloading: The
high-end smart phones released in 2012 typically have quad-
core processors and more than 1GB of RAM. Due to their
significantly improved capability, the phones are expected to
multitask more often. For instance, people will enjoy Web
browsing or online gaming while downloading files such as
books, music, movies or applications in the background. In
such cases, we found that the current TCP implementation
incurs long delays for the interactive flow (Web browsing or
online gaming) since the buffer is filled with packets belong-
ing to the background long-lived TCP flow.
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Figure 10: The average Web object fetching time
is 2.6 times longer when background downloading is
present.

Figure 10 demonstrates that the Web object fetching time
is severely degraded when a background download is un-
der way. In this experiment, we used a simplified method
to emulate Web traffic. The mobile client generates Web
requests according to a Poisson process. The size of the
content brought by each request is randomly picked among
8KB, 16KB, 32KB and 64KB. Since these Web objects are
small, their fetching time mainly depends on RTT rather
than throughput. When a background long-lived flow causes
long queues to be built up, the average Web object fetching
time becomes 2.6 times longer.
Throughput in Large BDP Networks: The sites that
smart phone users visit are diverse. Some contents are well
maintained and CDNs (content delivery networks) are as-

sisting them to get “closer” to their customers via replica-
tion. In such cases, the throughput performance can be
satisfactory since the BDP of the network is small (Fig-
ure 9). However, there are still many sites with long latency
due to their remote locations. In such cases, the static set-
ting of tcp rmem max (which is tuned for moderate latency
case) fails to fill the long fat pipe and results in sub-optimal
throughput. Figure 11 shows that when a mobile client in
Raleigh, U.S. downloads contents from a server in Seoul, Ko-
rea over AT&T HSPA+ network and Verizon LTE network,
the default setting is far from optimal in terms of through-
put performance. A larger tcp rmem max can achieve much
higher throughput although setting it too large may cause
packet loss and throughput degradation.

In summary, flat TCP has performance issues in both
throughput and delay. In small BDP networks, the static
setting of tcp rmem max may be too large and cause un-
necessarily long end-to-end latency. On the other hand, it
may be too small in large BDP networks and suffer from
significant throughput degradation.

5. OUR SOLUTION
In light of the limitation of a static tcp rmem max setting,

we propose a dynamic receive window adjustment algorithm
to adapt to various scenarios automatically. But before dis-
cussing our proposal, let us first look at how TCP receive
windows are controlled in the current implementations.

5.1 Receive Window Adjustment in Current
TCP Implementations

As we know, the TCP receive window was originally de-
signed to prevent a fast sender from overwhelming a slow
receiver with limited buffer space. It reflects the available
buffer size on the receiver side so that the sender will not
send more packets than the receiver can accommodate. This
is called TCP flow control, which is different from TCP con-
gestion control whose goal is to prevent overload in the net-
work rather than at the receiver. Flow control and conges-
tion control together govern the transmission rate of a TCP
sender and the sending window size is the minimum of the
advertised receive window and the congestion window.

With the advancement in storage technology, memories
are becoming increasingly cheaper. Currently, it is common
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Figure 11: Throughput and RTT performance of a long-lived TCP flow in a large BDP network under different
tcp rmem max settings. The default setting results in sub-optimal throughput performance since it fails to
saturate the long fat pipe. 655360 for AT&T and 917504 for Verizon provide much higher throughput.

to find computers (or even smart phones) equipped with gi-
gabytes of RAM. Hence, buffer space on the receiver side
is hardly the bottleneck in the current Internet. To im-
prove TCP throughput, a receive buffer auto-tuning tech-
nique called Dynamic Right-Sizing (DRS [6]) was proposed.
In DRS, instead of determining the receive window based
by the available buffer space, the receive buffer size is dy-
namically adjusted in order to suit the connection’s demand.
Specifically, in each RTT, the receiver estimates the sender’s
congestion window and then advertises a receive window
which is twice the size of the estimated congestion window.
The fundamental goal of DRS is to allocate enough buffer
(as long as we can afford it) so that the throughput of the
TCP connection is never limited by the receive window size
but only constrained by network congestion. Meanwhile,
DRS tries to avoid allocating more buffers than necessary.

Linux adopted a receive buffer auto-tuning scheme simi-
lar to DRS since kernel 2.4.27. Since Android is based on
Linux, it inherits the same receive window adjustment al-
gorithm. Other major operating systems also implemented
customized TCP buffer auto-tuning (Windows since Vista,
Mac OS since 10.5, FreeBSD since 7.0). This implies a sig-
nificant role change for the TCP receive window. Although
the functionality of flow control is still preserved, most of
the time the receive window as well as the receive buffer size
is undergoing dynamic adjustments. However, this dynamic
adjustment is unidirectional: DRS increases the receive win-
dow size only when it might potentially limit the congestion
window growth but never decreases it.

5.2 Dynamic Receive Window Adjustment
As discussed earlier, setting a static limit on the receive

window size is inadequate to adapt to the diverse network
scenarios in the mobile environment. We need to adjust
the receive window dynamically. DRS is already doing this,
but its adjustment is unidirectional. It does not solve the
bufferbloat problem. In fact, it makes it worse by incessantly
increasing the receive window size as the congestion window
size grows. What we need is a bidirectional adjustment al-
gorithm to rein TCP in the bufferbloated cellular networks.
At the same time it needs to ensure full utilization of the
available bandwidth. Hence, we build our DRWA proposal
on top of DRS and Algorithm 1 gives the details.

DRWA uses the same technique as DRS to measure RTT
on the receiver side when the TCP timestamp option [15] is

Algorithm 1 DRWA

1: Initialization:
2: tcp rmem max← a large value;
3: RTTmin ←∞;
4: cwndest ← data rcvd in the first RTTest;
5: rwnd← 0;
6:
7: RTT and minimum RTT estimation:
8: RTTest ← the time between when a byte is first acknowl-

edged and the receipt of data that is at least one window
beyond the sequence number that was acknowledged;

9:
10: if TCP timestamp option is available then
11: RTTest ← averaging the RTT samples obtained from

the timestamps within the last RTT;
12: end if
13:
14: if RTTest < RTTmin then
15: RTTmin ← RTTest;
16: end if
17:
18: DRWA:
19: if data is copied to user space then
20: if elapsed time < RTTest then
21: return;
22: end if
23:
24: cwndest ← α ∗ cwndest + (1− α) ∗ data rcvd;
25: rwnd← λ ∗ RTTmin

RTTest
∗ cwndest;

26: Advertise rwnd as the receive window size;
27: end if

not available (Line 8). However, if the timestamp option is
available, DRWA uses it to obtain a more accurate estima-
tion of the RTT (Line 10–12). TCP timestamp can provide
multiple RTT samples within an RTT whereas the tradi-
tional DRS way provides only one sample per RTT. With
the assistance of timestamps, DRWA is able to achieve ro-
bust RTT measurement on the receiver side. We also sur-
veyed that both Windows Server and Linux support TCP
timestamp option as long as the client requests it in the
initial SYN segment. DRWA records the minimum RTT
ever seen in this connection and uses it to approximate the
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Figure 12: When the smart phone is moved from a good signal area to a weak signal area and then moved
back, DRWA nicely tracks the variation of the channel conditions and dynamically adjusts the receive window
size, leading to a constantly low RTT but no throughput loss.

round-trip propagation delay when no queue is built up in
the intermediate routers (Line 14–16).

After knowing the RTT, DRWA counts the amount of
data received within each RTT and smooths the estimated
congestion window by a moving average with a low-pass fil-
ter (Line 24). α is set to 7/8 in our current implementation.
This smoothed value is used to determine the receive window
we advertise. In contrast to DRS who always sets rwnd to
2∗cwndest, DRWA sets it to λ∗ RTTmin

RTTest
∗cwndest where λ is

a tunable parameter larger than 1 (Line 25). When RTTest

is close to RTTmin, implying the network is not congested,
rwnd will increase quickly to give the sender enough space
to probe the available bandwidth. As RTTest increases, we
gradually slow down the increment rate of rwnd to stop TCP
from overshooting. Thus, DRWA makes bidirectional ad-
justment of the advertised window and controls the RTTest

to stay around λ∗RTTmin. More detailed discussion on the
impact of λ will be given in Section 5.4.

This algorithm is simple yet effective. Its ideas stem from
delay-based congestion control algorithms but work better
than they do for two reasons. First, since DRWA only guides
the TCP congestion window by advertising an adaptive re-
ceive window, the bandwidth probing responsibility still lies
with the TCP congestion control algorithm at the sender.
Therefore, typical throughput degradation seen in delay-
based TCP will not appear. Second, due to some unique
characteristics of cellular networks, delay-based control can
work more effectively: in wired networks, a router may han-
dle hundreds of TCP flows at the same time and they may
share the same output buffer. That makes RTT measure-
ment noisy and delay-based congestion control unreliable.
However, in cellular networks, a base station typically has
separate buffer space for each user [20] and a mobile user is
unlikely to have many simultaneous TCP connections. This
makes RTT measurement a more reliable signal for network
congestion.

However, DRWA may indeed suffer from one same prob-
lem as delay-based congestion control: inaccurate RTTmin

estimation. For instance, when a user move from a location
with small RTTmin to a location with large RTTmin, the
flow may still memorize the previous smaller RTTmin and
incorrectly adjust the receive window, leading to potential
throughput loss. However, we believe that the session time
is typically shorter than the time scale of movement. Hence,
this problem will not occur often in practice. Further, we
may supplement our algorithm with an accelerometer mon-
itoring module so that we can reset RTTmin in case of fast
movement. We leave this as our future work.
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Figure 13: DRWA has negligible impact in networks
that are not bufferbloated (e.g., WiFi).

5.3 The Adaptive Nature of DRWA
DRWA allows a TCP receiver to dynamically report a

proper receive window size to its sender in every RTT rather
than advertising a static limit. Due to its adaptive nature,
DRWA is able to track the variation of the channel condi-
tions. Figure 12 shows the evolution of the receive window
and the corresponding RTT/throughput performance when
we move an Android phone from a good signal area to a weak
signal area (from 0 second to 40 second) and then return to
the good signal area (from 40 second to 80 second). As
shown in Figure 12(a), the receive window size dynamically
adjusted by DRWA well tracks the signal strength change
incurred by movement. This leads to a steadily low RTT
while the default static setting results in an ever increasing
RTT as the signal strength decreases and the RTT blows
up in the area of the weakest signal strength (Figure 12(b)).
With regard to throughput performance, DRWA does not
cause any throughput loss and the curve naturally follows
the change in signal strength.

In networks that are not bufferbloated, DRWA has neg-
ligible impact on TCP behavior. That is because, when
the buffer size is set to the BDP of the network (the rule
of thumb for router buffer sizing), packet loss will happen
before DRWA starts to rein the receive window. Figure 13
verifies that TCP performs similarly with or without DRWA
in WiFi networks. Hence, we can safely deploy DRWA in
smart phones even if they may connect to non-bufferbloated
networks.

5.4 The Impact of λ

λ is a key parameter in DRWA. It tunes the operation
region of the algorithm and reflects the trade-off between
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Figure 14: The impact of λ on the performance of
TCP: λ = 3 seems to give a good balance between
throughput and RTT.

throughput and delay. Note that when RTTest/RTTmin

equals to λ, the advertised receive window will be equal to
its previous value, leading to a steady state. Therefore, λ
reflects the target RTT of DRWA. If we set λ to 1, that
means we want RTT to be exactly RTTmin and no queue is
allowed to be built up. This ideal case works only if 1) the
traffic has constant bit rate, 2) the available bandwidth of
the wireless channel is also constant and 3) the constant bit
rate equals to the constant bandwidth. In practice, Internet
traffic is bursty and the channel condition varies over time.
Both necessitate the existence of some buffers to absorb the
temporarily excessive traffic and drain the queue later on
when the load becomes lighter or the channel condition be-
comes better. λ determines how aggressive we want to be in
keeping the link busy and how much delay penalty we can
tolerate. The larger λ is, the more aggressive the algorithm
is. It will guarantee the throughput of TCP to be maximized
but at the same time introduce extra delays. Figure 14 gives
the performance comparison of different values of λ in terms
of throughput and RTT1. This test combines multiple sce-
narios ranging from small to large BDP networks, good to
weak signal, etc. Each has been repeated 400 times over
the span of 24 hours in order to find the optimal parameter
setting. As the figure shows, λ = 3 has some throughput
advantage over λ = 2 under certain scenarios. Further in-
creasing it to 4 does not seems to improve throughput but
only incurs extra delay. Hence, we set λ to 3 in our current
implementation. A potential future work is to make this
parameter adaptive.

1We plot different types of cellular networks separately since
they have drastically different peak rates. Putting LTE
and EVDO together will make the throughput differences
in EVDO networks indiscernible.
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Figure 15: DRWA improves the Web object fetching
time with background downloading by 39%.

5.5 Improvement in User Experience
Section 4.2 lists two scenarios where the static setting of

tcp rmem max may have a negative impact on user experi-
ence. In this subsection, we demonstrate that, by applying
DRWA, we can dramatically improve user experience in such
scenarios. More comprehensive experiment results are pro-
vided in Section 6.

Figure 15 shows Web object fetching performance with a
long-lived TCP flow in the background. Since DRWA re-
duces the length of the queue built up in the cellular net-
works, it brings 42% reduction in RTT on average, which
translates into 39% speed-up in Web object fetching. Note
that the absolute numbers in this test are not directly com-
parable with those in Figure 10 since these two experiments
were carried out at different time.

Figure 16 shows the scenario where a mobile client in
Raleigh, U.S. launches a long-lived TCP download from a
server in Seoul, Korea over both AT&T HSPA+ network and
Verizon LTE network. Since the RTT is very long in this
scenario, the BDP of the underlying network is fairly large
(especially the LTE case since its peak rate is very high).
The static setting of tcp rmem max is too small to fill the
long fat pipe and results in throughput degradation. With
DRWA, we are able to fully utilize the available bandwidth
and achieve 23% ∼ 30% improvement in throughput.

6. MORE EXPERIMENT RESULTS
We implemented DRWA in Android phones by patching

their kernels. It turned out to be fairly simple to implement
DRWA in the Linux/Android kernel. It only takes around
100 lines of code. We downloaded the original kernel source
codes of different Android models from their manufacturers’
website, patched the kernels with DRWA and recompiled
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Figure 17: Throughput improvement brought by DRWA over various cellular networks: the larger the
propagation delay is, the more throughput improvement DRWA brings. Such long propagation delays are
common in cellular networks since all traffic must detour through the gateway [31].
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Figure 16: DRWA improves the throughput by 23%
in AT&T HSPA+ network and 30% in Verizon LTE
network when the BDP of the underlying network
is large.

them. Finally, the phones were flashed with our customized
kernel images.

6.1 Throughput Improvement
Figure 17 shows the throughput improvement brought by

DRWA over networks of various BDPs. We emulate dif-
ferent BDPs by applying netem [12] on the server side to
vary the end-to-end propagation delay. Note that the prop-
agation delays we have emulated are relatively large (from
131ms to 798ms). That is because RTTs in cellular networks
are indeed larger than conventional networks. Even if the
client and server are close to each other geographically, the
propagation delay between them could still be hundreds of
milliseconds. The reason is that all the cellular data have to

go through a few IP gateways [31] deployed across the coun-
try by the carriers. Due to this detour, the natural RTTs in
cellular networks are relatively large.

According to the figure, DRWA significantly improves the
TCP throughput in various cellular networks as the propa-
gation delay increases. The scenario over the Sprint EVDO
network with the propagation delay of 754ms shows the
largest improvement (as high as 51%). In LTE networks,
the phones with DRWA show throughput improvement up
to 39% under the latency of 219ms. The reason behind the
improvement is obvious. When the latency increases, the
static setting of tcp rmem max fails to saturate the pipe,
resulting in throughput degradation. In contrast, networks
with small latencies do not show such degradation since the
static value is large enough to fill the pipe. According to our
experiences, RTTs between 400 ms and 700 ms are easily ob-
servable in cellular networks, especially when using services
from oversea servers. In LTE networks, TCP throughput is
even more sensitive to tcp rmem max setting. The BDP can
be dramatically increased by a slight RTT increase. There-
fore, the static configuration easily becomes sub-optimal.
However, DRWA is able to keep pace with the varying BDP.

6.2 RTT Reduction
In networks with small BDP, the static tcp rmem max

setting is sufficient to fully utilize the bandwidth of the net-
work. However, it has a side effect of long RTT. DRWA
manages to keep the RTT around λ times of RTTmin, which
is substantially smaller than the current implementations in
networks with small BDP. Figure 18 shows that the reduc-
tion in RTT brought by DRWA does not come at the cost
of the throughput. We see a remarkable reduction of RTT
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Figure 18: RTT reduction in small BDP networks: DRWA provides significant RTT reduction without
throughput loss across various cellular networks. The RTT reduction ratios are 49%, 35%, 49% and 24% for
AT&T HSPA+, Verizon LTE, Verizon EVDO and Sprint EVDO networks respectively.

up to 49% while the throughput is guaranteed at a similar
level (4% difference at maximum).

Another important observation from this experiment is
the much larger RTT variation under static tcp rmem max
setting than that with DRWA. As Figures 18(b) and 18(d)
show, the RTT values without DRWA are distributed over a
much wider range than that with DRWA. The reason is that
DRWA intentionally enforces the RTT to remain around the
target value of λ ∗ RTTmin. This property of DRWA will
potentially benefit jitter-sensitive applications such as live
video and/or voice communication.

7. DISCUSSION

7.1 Alternative Solutions
There are many other possible solutions to the bufferbloat

problem. One obvious solution is to reduce the buffer size
in cellular networks so that TCP can function the same way
as it does in conventional networks. However, there are two
potential problems with this simple approach. First, the
large buffers in cellular networks are not introduced without
a reason. As explained earlier, they help absorb the busty
data traffic over the time-varying and lossy wireless link,
achieving a very low packet loss rate (most lost packets are
recovered at link layer). By removing these extra buffer
space, TCP may experience a much higher packet loss rate
and hence much lower throughput. Second, modification
of the deployed network infrastructure (such as the buffer
space on the base stations) implies considerable cost.

An alternative to this solution is to employ certain AQM
schemes like RED [9]. By randomly dropping certain packets
before the buffer is full, we can notify TCP senders in ad-

vance and avoid long RTT. However, despite being studied
extensively in the literature, few AQM schemes are actually
deployed over the Internet due to the complexity of their pa-
rameter tuning, the extra packet losses introduced by them
and the limited performance gains provided by them. More
recently, Nichols et al. proposed CoDel [22], a parameter-
less AQM that aims at handling bufferbloat. Although it
exhibits several advantages over traditional AQM schemes,
they suffers from the same problem in terms of deployment
cost: you need to modify all the intermediate routers in the
Internet which is much harder than updating the end points.

Another possible solution to this problem is to modify the
TCP congestion control algorithm at the sender. As shown
in Figure 7, delay-based congestion control algorithms (e.g.,
TCP Vegas, FAST TCP [28]) are resistive to the bufferbloat
problem. Since they back off when RTT starts to increase
rather than waiting until packet loss happens, they may
serve the bufferbloated cellular networks better than loss-
based congestion control algorithms. To verify this, we com-
pared the performance of Vegas against CUBIC with and
without DRWA in Figure 19. As the figure shows, although
Vegas has a much lower RTT than CUBIC, it suffers from
significant throughput degradation at the same time. In con-
trast, DRWA is able to maintain similar throughput while
reducing the RTT by a considerable amount. Moreover,
delay-based congestion control protocols have a number of
other issues. For example, as a sender-based solution, it re-
quires modifying all the servers in the world as compared
to the cheap OTA updates of the mobile clients. Further,
since not all receivers are on cellular networks, delay-based
flows will compete with other loss-based flows in other parts
of the network where bufferbloat is less severe. In such sit-
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Figure 19: Comparison between DRWA and TCP Vegas as the solution to bufferbloat: although delay-based
congestion control keeps RTT low, it suffers from throughput degradation. In contrast, DRWA maintains
similar throughput to CUBIC while reducing the RTT by a considerable amount.

uations, it is well-known that loss-based flows unfairly grab
more bandwidth from delay-based flows [3].

Traffic shaping is another technique proposed to address
the bufferbloat problem [26]. By smoothing out the bulk
data flow with a traffic shaper on the sender side, we would
have a shorter queue at the router. However, the problem
with this approach is how to determine the shaping param-
eters beforehand. With wired networks like ADSL or ca-
ble modem, it may be straightforward. But in highly vari-
able cellular networks, it would be extremely difficult to find
the right parameters. We tried out this method in AT&T
HSPA+ network and the results are shown in Figure 20.
In this experiment, we again use netem on the server to
shape the sending rate to different values (via token bucket)
and measure the resulting throughput and RTT. Accord-
ing to this figure, lower shaped sending rate leads to lower
RTT but also sub-optimal throughput. In this specific test,
4Mbps seems to be a good balancing point. However, such
static setting of the shaping parameters could suffer from
the same problem as the static setting of tcp rmem max.

In light of the problems with the above-mentioned solu-
tions, we handled the problem on the receiver side by chang-
ing the static setting of tcp rmem max. That is because
receiver (mobile device) side modification has minimum de-
ployment cost. Vendors may simply issue an OTA update to
the protocol stack of the mobile devices so that they can en-
joy a better TCP performance without affecting other wired
users. Further, since the receiver has the most knowledge of
the last-hop wireless link, it could make more informed deci-
sions than the sender. For instance, the receiver may choose
to turn off DRWA if it is connected to a network that is not
severely bufferbloated (e.g., WiFi). Hence, a receiver-centric
solution is the preferred approach to transport protocol de-
sign for mobile hosts [13].

7.2 Related Work
Adjusting the receive window to solve TCP performance

issues is not uncommon in the literature. Spring et al. lever-
aged it to prioritize TCP flows of different types to improve
response time while maintaining high throughput [25]. Key
et al. used similar ideas to create a low priority background
transfer service [16]. ICTCP [29] instead used receive win-
dow adjustment to solve the incast collapse problem for TCP
in data center networks.

There are a number of measurement studies on TCP per-
formance over cellular networks. Chan et al. [4] evaluated
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Figure 20: TCP performance in AT&T HSPA+ net-
work when the sending rate is shaped to different
values. In time-varying cellular networks, it is hard
to determine the shaping parameters beforehand.

the impact of link layer retransmission and opportunistic
schedulers on TCP performance and proposed a network-
based solution called Ack Regulator to mitigate the effect
of rate and delay variability. Lee [18] investigated long-
lived TCP performance over CDMA 1x EVDO networks.
The same type of network is also studied in [20] where
the performance of four popular TCP variants were com-
pared. Prokkola et al. [23] measured TCP and UDP perfor-
mance in HSPA networks and compared it with WCDMA
and HSDPA-only networks. Huang et al. [14] did a com-
prehensive performance evaluation of various smart phones
over different types of cellular networks operated by differ-
ent carriers. They also provide a set of recommendations
that may improve smart phone users experiences.

8. CONCLUSION
In this paper, we thoroughly investigated TCP’s behav-

ior and performance over bufferbloated cellular networks.
We revealed that the excessive buffers available in the ex-
isting cellular networks void the loss-based congestion con-
trol algorithms and the ad-hoc solution that sets a static
tcp rmem max is sub-optimal. A dynamic receive window
adjustment algorithm was proposed. This solution requires
modifications only on the receiver side and is backward-
compatible as well as incrementally deployable. Experiment
results show that our scheme reduces RTT by 24% ∼ 49%
while preserving similar throughput in general cases or im-
proves the throughput by up to 51% in large BDP networks.
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The bufferbloat problem is not specific to cellular networks
although it might be most prominent in this environment. A
more fundamental solution to this problem may be needed.
Our work provides a good starting point and is an immedi-
ately deployable solution for smart phone users.
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APPENDIX

A. LIST OF EXPERIMENT SETUP
See Table 1.

B. SAMPLE TCP RMEM MAX SETTINGS
See Table 2.
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Figure Client Server Network

Location
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3

Raleigh

Chicago
Seoul

Good

Weak
Linux Laptop Long-lived TCP

Raleigh

Princeton
Seoul

CUBIC

AT&T
Sprint

T-Mobile
Verizon

SK Telecom

HSPA+
EVDO

LTE
WiFi

4 Raleigh Good Galaxy S2
Traceroute

Long-lived TCP
Raleigh CUBIC AT&T HSPA+

5 Raleigh Good
Galaxy S2

Droid Charge
Ping Raleigh -

AT&T

Verizon

HSPA+
EVDO

LTE

6 Raleigh Good Linux Laptop Long-lived TCP Raleigh CUBIC

AT&T

Sprint
T-Mobile

Verizon

HSPA+
EVDO

7 Raleigh Good Linux Laptop Long-lived TCP Raleigh

NewReno

Vegas
CUBIC
BIC

HTCP
HSTCP

AT&T HSPA+

8 Raleigh Good

Linux Laptop
Mac OS 10.7 Laptop

Windows 7 Laptop
Galaxy S2
iPhone 4

Windows Phone 7

Long-lived TCP Raleigh CUBIC AT&T HSPA+

9 Raleigh Good
Galaxy S2

Droid Charge
Long-lived TCP Raleigh CUBIC

AT&T

Verizon

HSPA+

LTE

10 Raleigh Good Galaxy S2
Short-lived TCP

Long-lived TCP
Raleigh CUBIC AT&T HSPA+

11 Raleigh Good
Galaxy S2

Droid Charge
Long-lived TCP Seoul CUBIC

AT&T

Verizon

HSPA+

LTE

12 Raleigh
Good

Weak
Galaxy S2 Long-lived TCP Raleigh CUBIC AT&T HSPA+

13 Raleigh Good Galaxy S2 Long-lived TCP Princeton CUBIC - WiFi

14
Raleigh

Seoul

Good

Weak

Galaxy S2

Droid Charge
EVO Shift

Long-lived TCP Raleigh CUBIC

AT&T
Verizon

Sprint
SK Telecom

HSPA+

LTE
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15 Raleigh Good Galaxy S2
Short-lived TCP
Long-lived TCP

Raleigh CUBIC AT&T HSPA+

16 Raleigh Good
Galaxy S2
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17 Raleigh Good
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Long-lived TCP Raleigh CUBIC

AT&T
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LTE
EVDO

19 Raleigh Good Galaxy S2 Long-lived TCP Raleigh
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20 Raleigh Good Galaxy S2 Long-lived TCP Raleigh CUBIC AT&T HSPA+

Table 1: The setup of each experiment

Samsung Galaxy S2 (AT&T) HTC EVO Shift (Sprint) Samsung Droid Charge (Verizon) LG G2x (T-Mobile)
WiFi 110208 110208 393216 393216
UMTS 110208 393216 196608 110208
EDGE 35040 393216 35040 35040
GPRS 11680 393216 11680 11680
HSPA+ 262144 - - 262144
WiMAX - 524288 - -
LTE - - 484848 -

Default 110208 110208 484848 110208

Table 2: Maximum TCP receive buffer size (tcp rmem max) in bytes on some sample Android phones for
various carriers. Note that these values may vary on customized ROMs and can be looked up by looking for
“setprop net.tcp.buffersize.*” in the init.rc file of the Android phone. Also note that different values are set
for different carriers even if the network types are the same. We guess that these values are experimentally
determined based on each carrier’s network conditions and configurations.
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