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ABSTRACT

The future of mobile computing involves autonomous drones, robots

ation of mobile computing and its challenges will likely be defined
in the context of a variety of autonomous mobile agents, includ-

and vehicles. To accurately sense their surroundings in a variety of "9 drones, self-driving cars, or semi-autonomous robots. Today,

scenarios, these mobile computers require a robust environmentaf
mapping system. One attractive approach is to reuse millimeter-

wave communication hardware in these devieeg, 60GHz net-

working chipset, and capture signals reflected by the target surface.

The devices can also move while collecting reflection signals, cre-
ating a large synthetic aperture radar (SAR) for high-precision RF

imaging. Our experimental measurements, however, show that this
approach provides poor precision in practice, as imaging results are
highly sensitive to device positioning errors that translate into phase
errors. We address this challenge by proposing a new 60GHz imag-

ing algorithm,RSS Series Analysighich images an object using

only RSS measurements recorded along the device’s trajectory. In' “*; . .
y 9 J 24 ¢ orin dark areasq(.g.tunnels), while moving at moderate speeds.

addition to object location, our algorithm can discover a rich se
of object surface properties at high precision, including object sur-
face orientation, curvature, boundaries, and surface material.

tested our system on a variety of common household objects (be-

tween 5cm—30cm in width). Results show that it achieves high
accuracy (cm level) in a variety of dimensions, and is highly robust
against noises in device position and trajectory tracking. We be-
lieve that this is the first practical mobile imaging system (re)using
60GHz networking devices, and provides a basic primitive towards
the construction of detailed environmental mapping systems.

Categories and Subject Descriptors

utonomous drones are scanning large crop fields and farm live-
stock, unmanned helicopters are delivering supplies to soldiers in
the field, while water-proof drones patrol the underground sewer
system in Barcelona [3]. In the near futuflying drones will de-
liver our mail, packages and grocerielf-driving cars will drop
us off at work, and first responder robots will be first on scene to
rescue victims of disastets [31].

A key challenge for the widespread deployment of these au-
tonomous devices is the environmental sensing systegna mo-
bile imaging radar system that captures the position, shape and sur-
face material of nearby objects. These systems must provide accu-
rate and robust information about the device’s surrounding at night

Highly accurate results are critical, and errors can produce dire

weConsequences. For example, Google’s self-driving cars use maps

with inch-level precisiond [35], while devices that assist the visu-
ally impaired must have errors smaller than 10cim [9, Expally,

to be placed on a variety of autonomous devices, the imaging sys-
tem should be compact, lightweight and cost-effective.

None of the existing solutions meet these needs. Traditional vis-
ible light imaging systemse(g.cameras) perform poorly in dark or
low-light conditions, and lack the precision desired by these appli-
cations. Acoustic solutions have been used successfully for rang-
ing over short distances [39.149], but are easily disrupted by back-
ground noise and fail over longer distance@rior works on RF

C.2.2 [Computer Systems Organizatiof: Computer-Communicationgmaging use WiFi bands to track human motion and activity [7, 8,

Networks
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1. INTRODUCTION

Mobile computing is evolving. For decades, mobile computing

15,12], detect metal objecis [12], and map large obsteclés [36]. But
they require costly specialized hardware or large antennas unsuit-
able for mobile devices. A recent project reuses WiFi communi-
cation devices with multiple antennas to image objects, but its pre-
cision is fundamentally limited by WiFi's large wavelength [25].
Finally, while today’s millimeterwave imaging systems can offer
accurate object imagin@l[6.10.134,42], they all require specialized
hardwareg.g.large lens radars and FMCW circuits, and do not fit

centered around the user and her movements, whether it was orfhe size or cost constraints of commodity mobile devices.

foot, or on vehicles such as buses or cars. However, the nextgenerRF Imaging via 60GHz Networking Radios.
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One attractive
approach is RF imaging radar that reuses commodity 60GHz net-
working radios to “image” the environment by capturing 60GHz
transmissions reflected by nearby objects. Such a high frequency
RF radar system has several key advantages over alterndirsts.
60GHz links are highly directional, making them relatively im-
mune to interference from environmental factors such as ambient
sound or wireless interferencBecond60GHz beams exhibit good
reflective properties, and work reliably in a wide range of lighting
conditions in both indoor and outdoor locatiofnally, 60GHz ra-



dios are relatively inexpensive:($40 [45,/51]), and small enough RSA is robust against small device positioning and tracking er-
to be included in today’s smartphones and tablets. rors because unlike SAR, it does notimage an object by locating the
The real challenge of building accurate mobile RF imaging is individual points on the reflected surface. Instead, RSA focuses on
achieving high accuracy within a small device. A simple rule from how the collection of these points creates a distribution of RSS val-
imaging radar theory [13], defined by €d.(1), holds for antenna size ues at different observation locations. Such a distribution not only

(aperture) and the optimal accuracy (radar resolution): captures the overall shape of the target object, but also tolerates
. local deviations and errors in device positioning and trackidsy.

Resolution = Lovetength - distance 1) ing testbed experiments, we find that an RSA-based 60GHz system

aperture can achieve accurate imaging results in the presence of positioning

For smartphone-sized antennas, even the most high frequency raerrors as large as 10cm.
dios (5-120GHz) can produce resolutions no better than 1 meter, In the remainder of this paper, we present our 60GHz-based mo-

clearly inadequate! bile imaging system. We describe techniques for automatically
Qur Inltla! _work in this space explored the pO§SIbI|Ity of using estimating object location, orientation, surface curvature, surface
device mobility to emulate @irtual antenna arraywith large aper- boundaries, and even the surface material of nearby objects. We

ture [52]. This design uses the mobile device as a receiver, with also present a detailed workflow of a practical implementation of
a decoupled transmitter either embedded in the infrastructure orour 60GHz imaging, including techniques for detecting the pres-
“deployed” on-demand by the usee.g, mounted on a nearby  ence of objects and planning the receiver movement. Finally, we
drone). By taking measurements of the same reflected signal atuse detailed experimental measurements on a local 60GHz wireless
multiple locations and applying th®ynthetic Array Radar (SAR)  testbed to validate the utility and accuracy of our techniques. Our
algorithm [14], the system emulates the signals received by differ- testbed results on 12 common household objects (of 5cm-30cm in
ent elements of a large antenna array. Using 60GHz beams is eswidth) show that our proposed imaging system can image these ob-
pecially advantageous here. Since 60GHz has a carrier wavelengttjects at a high precisiofe.g.~5cm in object location and surface

of 5mm (12x shorter than WiFi/cellular), a user using 60GHz links  boundariesyvith just small movement¢1m) by the receiver.

can obtain fine-grain resolution with just small movements in the | i itations. Our work provides a first step in the develop-
measurement area [52]. ment of high precision RF imaging (re)using 60GHz networking
Practical Limitations of SAR.  The goal of our work isto design,  chipsets. Our current design has several limitations; some funda-
build, and deploy an accurate mobile imaging system for practical mental to the choice of 60GHz radios, while others can potentially
applications. Through experiments on an experimental testbed, webe reduced via a better design.

quickly identifiedtwo fundamental limitations with the SAR ap- First, to stay robust against device positioning/tracking errors,
proach to imaging radar in real-wortdobile settings.First, SAR our RSA imaging does not use any phase information from the ra-
is highly sensitive to receiver trajectory tracking noise. Any devia- did]. As a result, we are unable to recognize fine-grained details on
tion from the path produces significant error in the predicted points an objectg.g.the individual keys on a computer keyboard. Instead
on the reflection surface. This impact becomes particularly notable we can identify the overall rectangular shape of the keyboard. Sim-
when the deviation is greater thanthe RF wavelength. Whether ilarly we were unable to identify very small objects like keyrings.
the receiver is a handheld device, a robot, or a flying drone, its Improving imaging precision in the presence of device positioning
movement is likely to deviate from the targeted straight line trajec- errors is an area of open researSkcongthe working range of our

tory, and deviations are likely much greater théfor 60GHz links, imaging system is determined by the underlying 60GHz radios and
which is 5mm.Secondhigh resolution imaging via SAR requires  the object surface mateffalWhile our solution does not need ac-
knowledge of the beam’s phase informatigi.(But any mm-level tual high speed transmissions, accurate RSS measurements require

error in the receiver’s position or trajectory introduces large errors signals to be sufficiently stable. Using an off-the-shelf, low-cost

in computing¢, and thus using phase information actually adds mobile 60GHz chipset (from Wilocity), we found that the imag-

large errors into th&AR imaging result. ing rangf is at least 10m for metal objects, and 5m for cardboard
Ensuring accurate positioning and moventeatking to the level boxes (like those found in Amazon packagingiinally, because

of millimetersis difficult using commodity hardware. Thus, accu- 60GHz signals cannot penetrate walls or most objects, our imaging

rate mobile 60GHz imaging requiresnew imaging approaato- system works when both transmitter and receiver have line-of-sight

bust to device positioning and trajectory errors. to the target object. Thus to perform effective imaging, especially

60GHz Imaging via RSS Series Analysis. Our observationis  in 3D, mobile devices must have a way to intelligently navigate

that the SAR algorithm is sensitive to positioning errors because across complex spaces. This is another active research problem.

each error propagates when computing positions on each object’s

surface. As a more robust alternative, we propose an approach tha2_ MOBILE 60GHZ RADAR

identifiesthe location, overall shape, size and matesfahe target

object, by comparing the measured distribution of 60GHz received > . . ) . -
signal strength (RSS) values against RSS value distribupess transmissions. First, we begin by identifying key challenges facing

dicted from our general surface-reflection model. Since key sur- mobile imaging systems, and explain why 60GHz radios provide
face propertiese(g. width and curvature) are strongly correlated 2" attractive solution. We then describe initial designs on 60GHz
with reflected RSS distributions, we can accurately determine the - —

In some cases, not requiring phase can be an advantage of our

overall surface shape of the target object. We call this approach . >
. . : system, since most COTS radios do not report phase but only RSS.
RSS Series Analysisr RSA for short. Finally, our work leverages “Objects of different materials introduce different degree of signal

a unique gdvantage .Of 60GHz radios — as the reéceiver moves anqoss. Metal objects in general introduce no loss while wood objects
(re)aligns its beam, it reports the (strongest) receive beam direc-jyiroduce 12dB loss in signal strength.

tion and the corresponding RSS valte [2]. Such directional RSS 3pjgre the imaging range defines the distance between the object

measurements carry ample information of the reflection surface to and the receiver, assuming the transmitter and receiver are of equal
enable high precision imaging. distance to the object.

In this section, we set the context for mobile imaging using 60GHz




imaging radar using synthetic array radar (SAR) algorithms, and 60

the limitations they face in real deployment settings. 8 45 | Unooasy m i Noise-Free
2.1 Mobile Imaging Radar and 60GHz £ 30
Mobile imaging radar systems face additional technical chal- £ 15}
lenges compared to their traditional counterparts. Traditional imag- R ‘ ‘
ing radars detect the position and shape of an object by emitting RF 0 02 04 06 08 1
signals and analyzing the reflected sighal[7. 815, 12.136]6.10, 34, Moving Distance (m)

42]. They typically make use of specialized hardware such as FM  Figyre 1: Experimental results demonstrate the limitations of SAR.
circuits and highly directional, large dish antennas, and thus are not

suitable for mobile devices. Instead, to be placed on a variety of au-

tonomous devices from smartphones to drotfesimaging system S o ]

should be severely constrained in size in both the processing hard-Pistatic radar systemcan significantly improve radar range over
ware and the antenna, which severely limits the maximum imaging & single transceiver (monostatic) [40]. We consider a mobile radar

resolution (see EJ 1). For smartphone-sized anteraa aper- system including the primary mobile device acting as a receiver and
ture), maximum imaging resolution for an objectidfin away is adecoupled transmitter. For example, a system to assist the visually
1m using 120GHz transmissions @dm at 5GHz. Furthermore, ~ impaired may include an app on the user's smartphone, and trans-

mobile radar systems target commodity devices, which rules out mitters embedded in the walls or ceiling. The transmitter/receivers

costly FM pulse circuits. Similarly, cost constraints prevent the use duties can also be split across multiple mobile deviegsmultiple

of fine accuracy positioning devices, or dispersion analysis for ma- drones scanning underground tunnels.

terial detection (specialized transmitters). The transmitter (TX) sends 60GHz beacons that reflect off of
Instead, mobile imaging radar can (re)use existing wireless net- Néarby objects. Each beacon includes the angle of transmission,

working chipsets on mobile devices, but leverage human or device and if possible the transmitter’s relative location to the receiver.

mobility to greatly extend antenna aperture. This can provide res- Each RXmoves and periodically scans and records signal strengths

olution better than the limit defined by E@J (1). Next, we describe for beacons, and processes these data on the fly to identify, locate

key components of such a system. and image nearby objects.

Leveraging 60GHz Radios. Today’s mobile devices are equipped .
with multiple wireless interfaces.g. cellular, WiFi, Bluetooth, 22 A Synthetlc Array Radar (SAR) SyStem

and 60GHz radfh Among them, 60GHz is ideal for mobile imag- Our earlier work proposed a 60GHz imaging system [52], where
ing for three reasons. the receiver estimates object location and surface boundary using
) ) the Synthetic Array Radar (SAR) algorithin [14]. Applying SAR
o Carrier wavelength of 60GHz is Smm, over 12x shorter than ,, measurements along a trajectory emulates the process where a
WiFi/cellular. Th.IS. translates into 12x smallgr reqwred antgnna large array focuses its narrow beam on different points of the object
aperture than WiFi/cellular under the same imaging resolution.  q,tace. Controlled testbed measurements achieve centimeter level
e 60GHz's short wavelength leads to more predictable propaga- accuracy in detecting object location and surface boundaries.
tion, i.e.minimal multi-path effects and signal strength is strongly The SAR Algorithm The imaging process is driven by the
correlated to propagation distance. The system can easily detemtraditional SAR algc;rithm for bistatic radar [41]. TX transmits
the presence of obje_cts by distinguishing between line-of-sight a simple sine wave, which is reflected by the iject towards RX.
(LoS) a_nd reflecte_d S|gna.IS. ) ) RX measures the reflected signal at different locations as it moves.
e The object reflection profile is more stable at 60GHz. Since re- 1o ynderstand SAR, consider a simple case where the object is a
flection loss is strongly correlated to object materiall [30], the point. Let N represent the number of signal measurements taken
radar system can determine the material type of the reflection by RX. The complex signat;(t) measured at RX location is
surface using signal strength measurements. r; = Ae™7% whereA,; is the product of the transmit and receive
antenna field radiation pattern and total propagation/reflection loss
ati, andg; is the change in phase. Assuming signal reflection does
not introduce any phase changs, = %di whered; is the total
propagation distance. SAR computes the relative pofgr) at
any pointp in space using the RS8;| and phase shifp; at dif-

Emulating virtual antenna arrays with mobility. A mobile
device can emulate a large aperture virtual antenna array by mov-
ing and taking signal measurements at different positions along its
trajectorﬁ. This allows a small mobile device to produce high-
resolution imaging results despite its small aperture antenna. For o R
example, a device can take signal measurements along a 1 meteferent locationsP(p) = |3°, rie? X% ‘ whered, is the distance
trajectory and achieve an (optimal) resolution at 60GHz of 15mm, from TX to each RX location through the poinp. If this point

from a distance of 3 meters away. Finally, user mobility also in- is a point on the object surfacie. d; = d;, then the summation
creases the system’s ability to detect surface curvature of objects,is constructive an@®(p) is large. Otherwise because of destructive
as reflected signals at different locations help capture the curvatureinterference, the relative power becomes small. Thus SAR deter-
of each of the object’s multiple faces. mines the object location and shape by searching for the strongest

Decoupling transmitter and receiver.  Given the small size ~ P(p) values across space.
of mobile devices, the power of a radar system is limited. Under o
the limited power, decoupling the transmitter and receiver, a.k.a 2.3 Limitations of SAR

“Qualcomm is producing low-cost 60GHz chipsets at or below pre- . EX'St'r?Q d(_35|gnl]5l2] makes two "idealistic” assumptions on d‘?‘
vious prices of $37.5, with a range @$m or more [45[51]. HP re-  Vice positioning: (1) TX and RX have perfect knowledge of their
cently released a laptop equipped with the Intel 60GHz chipset [1]. relative position; (2) RX moves in a perfect trajectery. a straight
SAperture of a virtual antenna array is equal to the distance traveled line. However, in practice these two assumptions do not hold, and
by the device. the imaging performance degrades significantly.
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Figure 2: An abstract view of the 60GHz signal reflection and RX’s ggnal measurements as it moves.

Limitation 1: Sensitivity to trajectory noise. It is well-known making the performance of unfocused SAR unpredictable. Simi-
that SAR is highly sensitive to trajectory noise — when moving, larly, existing work reported that unfocused SAR can be 10 times
RX often deviates from the targeted path, and its trajectory cannot worse than SAR[28].
be tracked accurately. Such noise translates into errors in comput-gummary.  These results highlight the fact that SAR-based sys-
ing d; and thus affect®(p). The impact becomes highly visible  tems are highly sensitive to device positioning errors. Because of
when the error is comparable to or larger than RF waveleagth  60GHz’s small wavelength (5mm), even small deviations in posi-
For 60GHz,A = 5mm. Thus even a few millimeter deviation in  tjon translate into large distortions in phase transition results, and
trajectory can largely affect the imaging result. significant errors in imaging quality. Given these fundamental lim-
We perform experiments to examine this artifact. Figure 1 plots jtations, we must explore SAR alternatives to achieve the high ac-

the imaging performance in terms of the error in derived surface curacy demanded by next generation autonomous devices.
boundary, for different object-to-RX distances. We compare two

systems: “noise-free SAR” where the RX moves in a straight line 3. RSS SERIES ANALYSIS (RSA)

and “noisy SAR” where we introduce random deviations (up to . . .
5mm) to the actual RX trajectory. We see that in the presence of Our proposal to address these limitation®BS Series Analysis
(RSA), a new 60GHz imaging algorithm. Unlike SAR, RSA im-

noise, the imaging error magnifies by at least 4 folds to 40cm! We i )
also observe that errors in TX-RX positioning have similar effect 39€S an object usingnly RSS measurements recorded along the
(results omitted due to space limits). SAR cannot tolerate such [€Ceivers trajectory. We summarize RSA here and present the de-
small errors, let alone the 10cm error typically seen from the tra- tailed algorithm in E4. RSA offers two advantages over prior work
jectory ofmobile devices like drones on RF imaging([25. 29. 52]:

To address this problem, one may consider using motion sensors® RSA can discover a rich set of object surface properties at high
to record the trajectory precisely. But commercial sensors cannot ~ resolution (cm level). These include object surface location, ori-
achieve millimeter-level accuracy. For example, accelerometer re- ~ €ntation, curvature, boundary and material.
ports only the acceleration of device, and the translation informa- ¢ RSA is highly robust against device positioning and trajectory
tion can only be obtained by integrating the result twice, resulting  tracking noise. Testbed results show that it can tolerate devia-
in poor performancé [38]. GPS is known to have meter-level errors.  tions as large as 10cm without degrading imaging quality.
Another approach by traditional SAR is to estimate the movement 3.1 Core Concept
noise [27]. This can be effective for aircraft radars because the
movement noise comes from air turbulence and can be approxi-
mated to the level of their operating wavelength (more than 10m).

RSA achieves high-precision imaging by combining receiver mo-
bility with the high directionality of 60GHz beamforming. Specif-
But for our targeted 60GHz mobile scenarios, the movement noise ically, RSA_trea_ts each object_surface asa contin_uou§ medium_that
. PP reflects a directional 60GHz signal towards the directional receiver
is much more random and harder to preaitthe millimeter level. RX. As RX moves and continually (re)aligns its beam to maximize
Limitation 2: Dependency on phase information.  To achieve received signal strength, the measured RSS value and its receive
high resolution, SAR requires the knowledge of the phase informa- heam direction (angle of arrival (AoA)) carry information of the
tion ¢;. However, since the positioning/trajectory errors will cor-  gpject surface. By analyzing thedeectional RSS measurements
rupt the phase transition process, using the phase information actuacross multiple RX locations, RSA recovers important properties
ally introduces large errors in imaging. An alternative solutionisto of the object surface, including position, curvature, boundary and
use “unfocused” SAR which assumgs; };_, are all identicali.e. material. At a high level, RSA works in 3 sequential steps.
¢: = 0, and only uses RSS to comp(ép) [52]. This reduces the 1. Surface curvature & center position. ~ Consider a scenario
impact of trajectory errors, but sacrifices imaging resolution: the in Figure[2(a) where TX points towards and reflects its beam off a
longer the receiver trajectory, the more the “uniform phase approx- flat object surface. As it moves, the directional receiver RX max-

imation” error amplifies and degrades imaging accuracy. Figure 1 . . e . . .
. . imizes RSS by pointing the receive beam towards the mirror point
shows that unfocused SAR performs slightly better than noisy SAR of TX respect to the object surfacee. TXmirror. This is a hy-

gfrjagl W;r:%gr:i? t:(f)rlern-flr;e Sﬁrﬁo Nr(])te d.tggn\é\':'(l; r(n(a()rl?';tféﬁi)a pothetical point that would have originated the signals if there was
way ! 9 ving di 9 no reflection, which can be computed as the intersection of AoAs,

aperture),_ unfocus_ed SAR is highly sensitive to this parameter. Af- i.e, the strongest RSS direction, for different points on the RX tra-
ter the trajectory distance exceeds some threshold, compounded er:

ror from the “uniform phase aporoximation” overcomes the gain Jectory. While in practice the AoA reported by RX might deviate
u ph. app ; 9 slightly due to non-ideal antenna patterns, imperfect reflection and
of larger apertures, and imaging performance deterloratesawckly.

. . : . p measurement artifacts, one can still locate, J:X.. by intersect-
This threshold is object dependent and hard to ideratifyriorid, ing the series of (noisy) AoAs collected as RX moves.

60ur measurements show that the threshold scales linearly with the Now consider the scenario where the object surface is curved,
object width and RX-object distance, thus hard to iderdifyriori. either convex (Figurgl2(b)) or concave (Figlie 2(c)). We can still
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Figure 3: Objects used in our experiments. The number on top of ezh object is the width of the object. The left five objects (a)-(e)
have curved surfaces and the right seven objects (f)-(I) haveati surfaces.

locate TX...rror DY intersecting the reported AoAs. Following the We experimented with four movement patterns involving a 1-
mirror and lens equatiof [24], a surface’s curvature type is deter- meter straight line trajectory in space: a drone flfiryuser mov-
mined by its focal lengtty: ing a mobile phone over a line, an arc, and a perfect straight line.
All four trajectories use the same start and end positions, and take
1 1 1 @) the same amount of time to finish. RSS measurements are taken

every 1cm, leading to a total 8f = 100 measurements per trajec-
tory. Each experiment collec{sRSS;, AoA; }7. |, whereRSS; is

wheredrx anddrx, ... are defined in Figurg] 2. Both values  the strongest RSS value as RX rotates its beam at locatom
are under sign conventiong., positive if behind the object, and AoA, is the corresponding receive beam direction

negative when in front of the object. The surface is convgxif 0, Our experiments led to two key observations
concave iff < 0, plane if f — oo, and|f| is half of the curvature P _ _ _ y t
radius. Therefore, we can identify surface curvature by computing 1. Strong correlation with object surface properties.  Our

drx anddrx. .. This requires information of the position and €xperiments confirm a strong correlation between RSS measure-
surface orientation of the object center, which can be estimated by ments and object surface properties. We show in Fighire 4 that the
intersecting the TX center beam direction with the reported AoAs. RSS patterns, either as RSS values or AoAs, can be used to distin-
guish objects of different surface curvature, surface boundary (

f dTX dTXm,irror

2. Surface boundary. Once curvature is determined, RSA de- - . A
tects surface boundary by exploiting the unique effect of 60GHz W'gtg)’ a8d6mater:je1!TPe_tgroundtrutt_h olf focal length in Figu 4(a)
directionality on signal reflection. When RX is within the area 15 L.om, 2.6m, and infinity, respectively.

of “Object coverage area’ (F|gu@ z(a))7 the Corresponding RSS is 2. Robustness againSt trajectory noise. The RSS series (bOth
strong because RX can align its beam to capture the (strong) re-RSS and AoA) are highly robust against trajectory noise. Figlre 5
flected signals. But when RX moves outside of this area, the qual- illustrates different views of the four trajectories, and the RSS val-
ity of its beam alignment (and RSS) degrades quickly. Thus shape Ues along the trajectories when imaging an object of 6.7cm wide.
of observed RSS values across different RX locations is strongly While the trajectories deviate from each other by as far as 10cm,
correlated to the object surface boundary. Using the estimated sur-their spatial RSS patterns align well. We experimented with other
face curvature, center location and orientation, we can model this movement patterns and objects, and arrived at similar conclusions.
correlation to enable reliable detection of surface boundary. A closer look shows that RSS values correlate most strongly with
“ab- propagation distancé. But in practiced is at least multiple me-

3. Material. = When a signal hits a surface, parts of it may be ters, and trajectory errors are in centimeters. Thus trajectory errors

sorbed,” leading to &eflection loss At 60GHz, this reflection loss L
- . L have little impact on RSS.

has a strong correlation of the surface material and the incident an- While these results may not be representative. thev validate our

gle [30]. In particular, the RSS of a reflected signal is the RSS of a . y P - ey

; - . - . __intuition that much about properties of the reflection surface can be
LoS signal (of the same propagation distance) minus the reflection . .
. : found in RSS measurements along the movement trajectory. Next
loss (all in dB). Once we know surface location and curvature, we

can derive the reflection loss and incident angle, and thus identify we present techniques to extract these properties from RSS data.
the likely surface material(s).

4., RSAIMAGING ALGORITHM
3.2 Quantifying Correlation via Measurements Our RSA algorithm provides highly accurate imaging results on

Our intuition is that RSS measurements along a trajectory are distance, curvature, boundary, and material detection, all while tol-
highly correlated to a number of properties of a reflection surface. erating positioning and trajectory errors. It takes three inputs: a
We use a commodity 60GHz radio testbed (detail{in §6) to better Sequence of RSS measurements in RSS and Angle of Arrival tu-
understand these correlations. We experimented with twelve ob- Ples{RSS;, AoA;}L;, RX's trajectory {.e. RX locationi) and
jects (listed in Figurgl3) of different width (5cm—30cm), curvature, its relative position to TX, and TX's transmit beam direction and
material (wood, metal, plastic) and surface roughness (smooth vs.pattern. We will discuss in(35 the procedure to obtain these inputs

roughffl. We varied the TX and RX locations to examine the impact and the sensing process for TX to focus its beam on the object.
of object placement. Imaging an object takes four processing steps on the RSS data.

We estimate location and orientation of the object center, then com-
pute surface curvature, and boundaries, and finally identify a set of
potential surface materials. We first describe these key components

A

A surface is considered smooth #f < 5575 and rough if
h > 2

555 [48]. Hereh is the min to max surface protuberance,

X\ = 5mm and@ is the incident angle. For our objects, the plastic Using a high-end IRIS+ drone by 3D Robotics Inc., we captured
keyboard is “rough” and a monitor surface is “smooth.” its movement trajectory when configured to fly straight.
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Figure 5: The measured RSS series remains stable across all fourdisy) 3D trajectories.

to image a single surface, and then the process to image multiplee.g, of size 3 in our current design, then performs a majority vote
surfaces/objects. Finally, we describe how RSA mitigates noise on pair-wise A0OA intersections to derive the mirror point.

from device localization, interference and RSS measurements. Given the estimate of object center point and orientation, we cal-
. . . . . culatedr x anddrx,,,,,.... by projecting the TX and the TX mirror
4.1 Es“mat'ng ObJeCt Center & Orientation point to the principal axis (see Figdrk 2). If we set the object cen-

RSA starts by computing an initial estimate of the location and ter as position Odrx is negative andirx,,,,,..... IS positive. RX
surface orientation of the object center, since it is input for subse- then computeg based on eq[{2). The surface is conveX if- 0,
quent steps. The intuition is simple: when TX's beam covers the and concave iff < 0, and2f is the curvature radius. In theory, a
object evenly and TX/RX are perfectly aligned, we can locate the flat/planar surface should haye= co. Yet in practical scenarios,
object surface center at the intersection of the TX beam direction f >1 meter is sufficient to identify most objects with a flat surface.
and eachdoA. While the TX/RX alignment is imperfect (since .

TX fixes its beam), the intersection with eadaA4; is still a good 4.3 Computing Surface Boundary

approximation of the reflection surface. The next step is to compute the surface bounday,the width

Like [52], RSA estimates the object center by performing a “ma- of the surface if the object was projected to the plane of RX’s move-
jority vote” on the set of intersection points. Givéh(K < N)in- ment trajectory. We exploit the strong correlation between the RSS
tersection points, RX identifies a cluster|df | + 1 points with the sequencd RSS;}¥, and the object surface, and propose a simple
minimum mean square error (MSE) among themselves. It approxi- RSS model for surface reflection. After adding surface curvature
mates the object center as the center of the clustethe position and center location as parameters, this model generates a direct
with minimum MSE to all other points in the cluster. To generate one-to-one mapping between a specific surface boundary and the
the K intersections, RSA picks a subsetdAs from { AoA;}}" sequence of RSS values captured by RX. Thus we can estimate the
whoseRSS; is among the strongest (and above the noise level) and surface boundary by searching for a surface profile whose model-
intersects them with the center direction of TX beam. predicted RSS sequence matches those observed by RX.

Since the incident and reflected angles are equal, we can computey RSS model for surface reflection.
the (candidate) direction of the object surface’s principal axis with
respect to each of th& AoAs. We derive the object center’s ori-
entation by computing the principal axis using majority vote over
K candidates, then computing its perpendicular direction.

A key difference from[[52] is that RSA iterates to improve its es-
timate of object center and orientation, using as input the curvature

_and boundary result_s _fro_m later steps. This he_Ips to mitigate the]. We also consider a far-field scenario where the propagation
impact of TX/RX positioning errors and other artifacts (34.6). distance is much larger than wavelengte.(> 100 times larger).

4.2 Characterizing Surface Curvature In our case, the wavelength of 60GHzigum, and the overall
After object position comes surface curvature. We characterize Propagation distance in our system should be at ledst.. Us-
an object’s surface curvature based on the mirror and lens equationnd the complex baseband representatiner far-field approxi-

defined by eq[{2). We first compute the “TX mirror point” and then Mation the 60GHz received signal at RX locatiois

compute the focal lengtfifrom drx anddrx,,,,,.,.,.. \We compute < _j2mg

it asFt)he intersection gffelmgle of arrivals for different pointsf)on the ri(t) = / AV Gy(i)e ] X 4@ Fp(i)e*”’““ u(t)dp  (3)
RX trajectory (FiguréR). To mitigate noise/artifacts in AOA mea- P dmdy (7)

surements, RSA first smoothens the AoAs using a moving window, overall propagation reflection

We develop a new surface
reflection model, which takes into account the reflection property of
a “fixed-size” reflection surface. Consider the TX transmission to-
wards the object as a collection of sharp rays, each reaching a point
p on the object is reflected towards RX. Here we consider a general
scattering reflection scenario where the pgintniformly scatters
signals in space according to the Lambertian reflection mbdel [26,
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where for thep™” reflected path arriving at locatian G, (4) is the

Minimizing Search Space. We can significantly reduce the
search space for the surface boundary size, by looking at only widths
that can exist within the triangle formed by the start and end points
of the RX trajectory, and the TX mirror point (see Figlite 2(a)). RX
can detect if the widthw is large enough for the triangle to bound
the reflection surface (steep dropoff in RSS before and after the sur-
face boundaries). For very large surfaces, RX might need to extend
its trajectory to detect the surface boundary. Assuming the surface
is bounded by the triangle, we can estimate the maximum value of
w using geometry. We then search for the true value atarting

from the max down tdem in the unit of0.1cm. These settings

are sufficient for the target imaging precision. Going for a higher

product of the corresponding transmit and receive antenna field ra-granularity adds extra computation complexity but little improve-

diation patternd,(7) is the total propagation lengtfh,,(7) is the
amplitude reflection coefficiens, (¢) is the corresponding change
in phaseu(t) is the complex baseband transmitted signal, Bnd

ment of imaging quality. Currently our search takes less than
for all our twelve test objects using a matlab implementation on a
standard MachbookProAs future work, we can further prune the

represents the object surface in 3D space. The key to this model issearch space using sophisticated methods such as cutting planes.

the constraint of the fixed size reflection surface, captured by the Measuring Curved Surfaces.

integral overP.

For curved surfaces, the reflected
RSS series display a different pattern: a convex surfacesoaliter

Because our design targets the overall shape of the object, wesignals to a wider area while a concave w#ithersignals towards

simplify Eq.[3) by assuming the surface is relatively smoath,
ignoring the fine-grained details. Therefore we consalaniform
reflection patterni.e, I'y (i) = I', ¢ () = ¢,Vp € P,i = 1..N.
Then we can pull out thE, () term, and derive RSS as:

/Rp(i)dp
P
 A/Gpe I X @

where R, (i) = a0 . Given the object curvature
P

and center location, and locations of TX and RX we can cal-

culateR,(z). Given the object surface boundary or width, we can

constructP and then derive? S SH. To remove the contribution of

I" which is unknown, we can normalizeSS; across.

2

RSS; = P, - T'? (4)

a smaller area (Figuid 2)Thus using the above method, we will
likely image a narrow, convex object as a wide object.

To address this, we apply a slightly different algorithm. Upon
determining that the object surface is non flat, RSA computes the
surface boundary usin@RSS‘(@)i Y ,,i.e.the RSS measured at a
fixedreceive beam directiofiacross all positions along the RX tra-
jectory. Heref = AoA;, j = argmax,_, n RSS;, i.e.the AoA
of the strongest RSS across all the RX locations. Intuitively, this
directiond is parallel to the surface’s principal axis, thB§§(6)i
includes less contribution of surface scattering (or gathering) but
more impact of surface boundary. This way, we can apply the same
surface reflectiomodel by using the curvature detection result to
constructP. In §8, we show that this method is accurate and also

We verified this model using testbed experiments on objects in robust against errors in the estimated curvature radius.

Figure[3. Example results in Figure 6 show that normalization ef-
fectively separates the contribution of materials from that of the
surface boundary,e. two objects of the same width but different

4.4 Identifying Potential Surface Materials

Finally, we seek to estimate the surface material based on the re-

materials have the same normalized RSS series. The measured RS&action loss2. Existing measurement studies on 60GHz propaga-

series closely matches the series predicted by our model.
Fitting Measurements to Model. We determine the surface

tion and reflection have built a table B values as a function of the
surface material and the angle of incidént [30]. We can estimate the

boundary by matching the observed RSS values to a range of RSSangle of incidence given the estimated surface orientation and cur-

series produced by the modéh this process, we consider a range
of possible surface width values. For each candidate widtive
construct the physical surfade use the model to predict the (nor-

malized) RSS series, and compare it with our (normalized) mea-

vature. From Eq{4),> = RSS!/ (Pt (ﬁ)2 [ Rp(z‘)dp|2>.

With I'? and the angle of incidence, we caarrow downthe mate-
rial type using the reflection loss tablor example, we can distin-

sured RSS series. To compute “similarity” between two series (or guish metal objects (0.3dB loss) from wood (12dB loss) or plastic

curves), we experimented with multiple metrics, including MSE,
MSE of the derivatives, and MSE of the dynamic time warping al-
gorithm [37]. Among these, MSE of the derivatives is the best:

al del al) 2
n=1/;(A¢ AV )

whereA?¢* and A% agre the derivatives of the normalized RSS

(©)

objects (8dB loss).

To obtain a reliable estimate ®F for flat surfaces, we select a
group of the strongest RSS measurement locations, and calculate
the T2 as above for each location. We then comphteas their
average. This helps to mitigate noise contributed by reflection arti-
facts near object boundaries.

Estimatingl? for curved surfaces is more challenging because
as signals scatter or gather, the above calculation becomes less reli-

ati using the measured values and the modeled values, respectively2Pl€. Our current solution s to introduce a compensation factor that
This metric works well because computing surface width means @Pproximates the impact of signal scattering or gathering. Specifi-
detecting the two edges, which lead to fast RSS degradation at thec@lly, we input the already derived object curvature and width into
corresponding RX locations. The RSS derivatives effectively cap- the RSS model, use it to generate the RSS series (ignbfipgnd

ture such RSS variationWe leave the task of finding the optimal
metric to future work.

®For efficiency, we approximat@ as a collection of points whose
interspacing< 5mm.

record the maximum RSS valugy.... We then input the width

into the RSS model but treat the surface as flat, generate the RSS
series and record the max;q:. The final reflection loss estimate
iST? - 7 f1at /Yeurve WNEI€Y f1at /Yeurve reflects the impact of sig-

nal scattering/gathering.
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Figure 7: Detecting and imaging multiple objects. (a) The three scaarios considered: two surfaces separated by a gap, a single
continuous surface, and one small surface in front of a big one. jbThe AoA pattern changes abruptly when two surfaces are
separated. (c) The AoA pattern displays three segments when ansll surface is in front of a big one.

4.5 Imaging Multiple Surfaces/Objects tionsto explore possible small shifts in center location and surface
So far our discussion targets scenarios with a single object sur-Poundary values that lead to a better match between the model pre-
face. We now discuss the feasibility of RSA for detecting and imag- dicted RSS profile and measured RSS data. Specifically, it shifts
ing multiple objects/surfaces. We consider two representative sce-the TX/RX locations by up td0cm and repeats the imaging pro-
narios: (1) two nearby objects separated by some space; and (2) £€SS- This iterative search stops when the similarity metric (defined

smaller object in front of a larger one (see Figre 7(a)). by eq. [5)) e>§ceeQS some threshold, or the boundary results of two
Intuitively, a key difference between single and multiple surface Consecutive iterations differ by 1cm or lessg.convergence.
reflection should be the reflection angles., the AoAs. Using RX trajectory errors. The basic imaging algorithm assumes

testbed measurements, we verified that for the above two multi- precise data on RX's trajectory. In practice, the movement itself is
surface scenarios the AoA pattern is significantly different from noisy —a high-end drone configured to fly a straight line can deviate
a single surface of the same width. For example, Fifiire 7(b) plots by 4cm. Motion-tracking (via accelerometers or other sensors) can
the reported AoAs as a function of the measurement location (1-60) easily generate 10cm errors in less than a seddnd[4, 38].

over a 60cm RX trajectory. For an even surface of 30cm in width, ~ Trajectory errors can translate into errors in locating the object
the AoA pattern grows smoothly as the RX moves. But when this center and TX mirror point, and errors in RSS model. For the for-
object is replaced by two 10cm objects separated by 10cm (samemer, RSA denoises by applying “majority vote” across multiple RX
overall width), the AoA pattern changes abruptly @by 5°). Simi- AoA measurements [(84). For the latter, we found the impact on
larly, Figure[T(c) plots the AoA pattern when one 10cm-wide object imaging quality to be minimal, and both RSS model and measure-
is placed in front of a 80cm-wide one. It is segmented into three re- ments are insensitive to trajectory errerslOcm. In our scenarios,
gions, corresponding to the uncovered portions of the larger objectwe configure RX to move in a line and rely on external trajectory
surface on each side and the small object in the middle. control to keep the trajectory error less thd@m. In practice, any

These significant changes in AoA patterns suggest that multiple errors that do propagate will add to noise in estimates of object cen-
objects can be detected using AoA derivatives along the trajectory. ter and TX mirror point. These will be addressed together with any
For all object scenarios we tedf8da threshold of° can reliably resulting noise from TX/RX positioning errors (see above).
detect and extract multiple objects. We can then apply the single- |yierference.  Background reflection from other objects can be
object based RSA to each segment to image individual surfaces of, o qied via the multi-surface detection and imaging process de-
moderate sizesThe key limitation here is that our imaging system  ¢.ribed in EZFB. The bigger challenge comes from possible cor-
lacks the precision to image small objects and fine-grained surfaceyyiion of RSS measurement values by RF interference from other
details, e.g.individual keys on a computer keyboard. Instead, it goGHz transmissions, g, strong signals from a LoS transmitter to
should detect and image an Amazon package on the floor. RX will distort the AoA values.

Above results also suggest that RSA can handle interference due it 5nqyjar separation between the interfering signal and reflected
to reflection from other objects. We treat the 80cm-width surface 1y gignals is sufficiently large, RSA can eliminate interference us-
in scenario C as the background object, where our system can stilli, 60GHz directionality. As RX scans across directions, it de-
identify and image the 10cm-wide object (surface 2) in the middle. (ects and decodes signals from different sources and only uses those

from TX to construct the RSS series. In rare cases where the signals

4.6 Handling Noise & Interference are closely aligned, the interference will likely affect data transmis-
We design RSA to stay robust to three types of noise or errors: sion between TX and RX during imaging.g. high RSS but recur-
positioning errorfor locating TX and RXtrajectory noisewhen ring packet errors. When this is detected, TX and RX can switch to

RX'’s trajectory deviates from the ideal line, aR$&S measurement  another 60GHz channel or change physical location.
noisecaused by RF interference or background reflection.

TX/RX positioning errors. Errors in TX/RX positions can 5. IMPLEMENTATION
propagate to errors in locating object center point and TX mirror

point. We address this by exploiting the fact that the measured
RSS series is stable and strongly correlated with the object surface.
After one round of imaging, RSA introducesntrolled perturba-

We now present the detailed workflow of a practical implemen-
tation of RSA imaging. First, TX and RX determine each other’s
position. They scan for any objects, and once found, TX focuses its
beam on the object and computes the RX movement direction and
19 our scenarios, when two objects are separated, the-gdgzm. distance. RX moves, collects RSS measurements and images the

The ability to detect 10cm gaps between objects is sufficient for object. The process does not require tight synchronization between
most mobile applications like drones. TXand RX, only that TX signals remain consistent during imaging,




e.g, a simple sine wave, so that RSS is stable over time. In partic- Latency. We expect the imaging delay is dominated by those of
ular, for 802.11ad[2], our sine wave based design can directly use RX movement and RSA data analysis. For latter, our current im-
single carrier (SC) to send consistent Os or 1s and generate a regulaplementation finishes in less than 3s and can easily be further opti-
sine wave, or use one of the OFDM subcarriers for imaging. mized,e.g, using convex optimization during iterative seardh(§4.6).

TX/RX positioning. To determine each other’s location, TX
and RX can exchange their locations (if known), or apply exist- 6. EVALUATION
ing mobile localization/ranging techniques based on RF or acous- We evaluate RSA in practical settings using off-the-shelf 60GHz
tic signals [11[29.39. 49]. We can also apply 60GHz localization radios. We study its utility and imaging quality in the presence
in addition to improve localization accuracy to centimeter-level (if Of device localization and trajectory errors and background reflec-
TX and RX have line of sight). tions. We also examine its error tolerance, and its sensitivity to dif-
60GHz localization leverages the 802.11ad bootstrapping proce-ferent system/hardware configurations. Finally, we compare RSA
dure and includes two steps. First, TX (in directional mode) steers with SAR and unfocused SAR, and perform a multi-object case
its beam in different directions and embeds its beam direction in the study by emulating drones locating a target object using RSA.
signal. RX (in omni-directional mode) receives signals over time .
ar?d identifie(s the strongest signal str)engtand TX %eam direc- 6.1 Testbed and Experlmental SetUp
tion «. If a LoS path exists between them, then RX can compute ~ We consider two types of 60GHz beamforming radios. The first
its distance to TXd from r (using the 60GHz Friis propagation ~ Uses a pair of Dell D5000 dock (as transmitter) and 6430u lap-
model [19]). To detect whether LoS exists, TX compatesndr top (as receiver), both equipped with a low-cost Wilocity 60GHz
with those estimated by the external localization technique. If the chipset designed for indoor mobile communications. The chipset
discrepancy is large, especiallydfis larger, the path is reflected. ~ Uses a 28 rectangular antenna array, and operates under the IEEE
Otherwise, LoS exists and TX locates RX viaandd. Next, TX 802.11ad standard[[2]. Unfortunately, the chipset does not expose
transmits inw direction. RX enters directional mode and scans for RSS values and the corresponding beam directions. Thus we use
the strongest signal. RX can locate TX using the strongest receiveit only for understanding the range of our 60GHz imaging design
direction at RX andi. when implemented on 802.11ad networking radiés {86.2).

The second and our main imaging testbed uses two HXI Gigalink
6451 60GHz radios, designed for outdoor communications. Since
there are no suitable 60GHz steerable antenna arrays on the mar-

et, we emulate beam steering by setting a horn antenna (of 10

dB beamwidth) on an electronic controlled mechanical rotator.
The horn antenna’s main lobe pattern closely align with that of a
10x 10 array with 1dBi elements and 21dBi gain, and the rotator
physically adjusts the beam direction in unitstof5°. The HXI
radios use the On-Off-Keying modulation to generate sine waves in
random on-off periods and reports RSS every 50ms. We note that
under the same environment, the RSS of the HXI link is actually
17d69 weaker than that of the Wilocity chipset. This is because
our HXI radio transmits at 0dBm and the cable that connects the
horn antenna to the radio introduces 23dB loss (in order to enable
mechanical antenna rotation).

The results of HXI radios with horn antennas should generalize
to phased arrays, because our emulation matches phased arrays in
three key aspectsFirst, 60GHz signal strength is largely deter-
mined by directionality and signal patterns of the main beam lobe
(the side lobe is 13.26 dB weaker), and our horn antenna’s main
lobe pattern closely aligns with that of a 10x10 array! [58ec-
ond because 60GHz propagation is stable over time (verified by
others [[23[50] and our own measurements), at each location RX
can accurately measure RSS along different directions despite its

Object Sensing & RX Movement Planning. TX and RX use
the above two steps of 60GHz localization to sense nearby objects
and compute the appropriate RX trajectory. There are two modifi-
cations from the sequence above. In step one, instead of reportin
only the strongest RSS, RX reports a list of TX beam directions
where the RSS exceeds the noise level. After pruning the list by
removing the LoS directions, the remaining represent reflected sig-
nals. From these directions, RX identifies a set of TX beam di-
rections{a”}{_, that TX should focus on based on their beam
radiation patterns and steering granularity. If an object is too wide
to be covered by a single TX beam, RSA can image the object by
having TX steering sequentially in multiple segments and stitching
the image results, or by TX modifying its antenna radiation pattern
to form a wider beam (if possible).

In the second step, TX slowly steers its beam in each of these
directions while RX measure$o A for eacha” direction. Ideally,
for eacha®, RX should move perpendicularly to the corresponding
AoA to detect object width. Furthermore, RSA uses the intersec-
tion of o* and AoA to approximate the object location and thus
the total propagation distaneg,. The projected RX movement
distance is then the width of the TX beam pattern at distahce
which is sufficient to discover the object surface shape. Together
the recommended path and distance allow RX to create a virtual

antenna array large enough to discover the object’s surface while . . > .
yarg 9 ) slow beam steering spe€third, the fine granularity of our rotator

minimizing the travel distance. ) . )

) ] ) o _allows us to emulate beam steering of phased aregsjn units
Object Imaging.  TX focuses its transmission on each specific 4 1 _ 3° required by the 802.11ad standdrd [5].
direction (while embedding the beam direction in its signal). As
RX moves, it collects RSS measurements using the 802.4dad
tenna alignmenprocedure. Collecting the (RSS, AoA) tuple across
multiple directions (8413 and84.6) does not require extra measure-
ments, and is done by modifying 802.11ad to report additional data.
Since for phased array, full-scope beam steering takes less tha
1mE, RX can perform real-time measurements as it moves, even
when TX rotates its beam across multiple directions to image mul-
tiple objects. Finally, RX analyzes the data to image the object(s).

Experiment Setup.  Our experiments take place in a classroom
of size 8mx12m with concrete walls. We place an object in the
middle of the room with LoS to both TX and RX. We move both
TX and RX to study imaging range and angle. By default, TX is

m away from the object and RX is 3.5m away. We tried other dis-
ances with little impact on results as long as the total propagation
path (from TX to object and then to RX) does not exceed the radio
range. By default, the testbed steers beamidtgranularity.

12The HXI radios have 0dBm transmit power, 25dBi antenna gain
per radio and 23dB cable loss due to the use of rotator. To compare
"phased array beam steering delay is as low as 50hs [47]. Scanningvith, the Wilocity chipset has 10dBm transmit power and 17dBi
360 in the steps of 1 takes 1&s. antenna gain per radio.
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We consider two types of RX movement: human waving smart-
phone and drone flying. The mechanical beamsteering means we
cannot perform imaging in real time. Instead, we record five tra-
jectories per type (by marking on paper) from actual movement of
human users and our Iris drone, and use them to drive RSS mea-
surements on our mechanical beamsteered radio. We align the tra- :;g . BSA
jectories so that the start and end points are 1 meter apart. Whether 40 -30 -20 -10 0 10 20 30 40
it's a user waving the device or a flying drone path, the maximum Location X (cm)
trajectory errors against a straight line are rougltlym. To follow
a specific moving trajectory, we mark the trajectory on the floor and
pinpoint the receiver to each trajectory point using a plumb-bob.

We implemented the 60GHz localization mechanism (discussed . -
in §9) for TX and RX. Across multiple scenarios, the measured 6.3 Imagmg Precision
TXI/RX localization error is consistently between 2 and 6cm. We  position/Curvature/Width.  Table[d lists RSA's overall imaging
broaden our tests by adding random 2-6cm TX/RX position errors results in terms of errors in object center position and orientation,
to our data analysis. In total, we have 60 noise instances per ob-detected curvature type, shape devidfiomnd errors in surface
ject/scenario to obtain statistically significant results. boundary (width) estimation. We list the median and max val-
Test Objects. Like existing works on radar imaging [25,136,/21, ues across all experiments while varying TX/RX position errors
20], we evaluate the utility and accuracy of our proposed design by (60 instances) and RX trajectories (10 instances, 5 user-waving, 5
imaging real objects of different size, curvature, and material. In drones). The results for human waving and drone flying are consis-
addition to the objects listed in Figure 3 which are of 5cm-30cm in  tent, so we did not isolate them.
width, we also test smaller objects including a keyring and a small ~ We see that in the presence of position/trajectory noises, RSA
wrench (2.5cm in width). From these we seek to identify objects achieves centimeter-level accuracy across all the objects, flat or

Location Y (cm)

Groundtruth —— |
RSA oo

Figure 8: Result of imaging a curved surface.

that our system can accurately image and those that it cannot. curved. In terms of center locations, the max error is below 4cm
. for metal flat surfaces, and slightly larger (6-9cm) for curved sur-
6.2 Imaging Range & Angle faces and other materials (due to weaker reflection). Note that the

We first use the Wilocity radios to verify the working range of depth of the object can be calculated based on the estimated object
our 60GHz imaging system when implemented using today’s 802.11eehter position and the location of RX, which we found has a max
mobile devices. For a pair of TX and RX, we block the LoS path error of 6em. The orientation error is always 1°. RSA detects
between them, forcing the link to search and use NLoS paths, the curvature type accurately, and characterizes the shape of the
the reflection path. Using objects of different materials as the re- surface within0.68cm deviation for flat surfaces and 6em for
flector, we measure the maximum propagation path length (TX to curved surfaces. The maximum error in surface width estimation is
object to RX) such as TX can successfully transmit a 100MB file boundedi.5cm. Figurel® plots the imaging result of a curved sur-
to RX. The path length is 20m for strong reflection material like face which captures the overall curved shape while being a slightly
metal, and 10m for weak reflection material like cardboard boxes wider than the actual object.

(used for Amazon packaging). Assuming that TX and RX are of \jaterial.  Using existing measurements on 60GHz reflecfioh [18,
the same distance to the object, the corresponding imaging rangesn) we built a reflection database of 39 materials. We added the
(from object to RX) are 10m and 5m, respectively. We note that ,rofile of cardboxes using our own measurements. Using RSA
in our measurements the RSS is sufficient to support high speedestimated reflection loss and incident angle, we identify from the
communication (385Mbps) at these distances. When it comes 10 yatahase the top three material candidates. Table 2 lists the result
imaging, the RSS requirement can be much lower as long as thefor four flat objects of different types (metal, plastic, wood and

resulting RSS measurement is accurate. This means that the aCtuaéardboard)and two curved objectsvhere RSA can successfully
imaging range can be much longer. narrow down the material type.

As discussed earlier, due to extra cabling loss, our HXI link is Ob d Limitati We al ke the following k b
17dB weaker despite its stronger antenna gain. As a result, the se;ye f'm' ations. Ve ?’Esotm;Si € 1o ‘2‘:"’(')”T‘9JS 68())/GOH-
imaging range is less than half of the Wilocity link, and we have secriya '?ns. rom out:.extpe.nnlﬁn wrst, r(:t:jseg tz d
to move the devices closer than we expect. Again this is due to :?a(;(lzi?l gonlg?:(gse OT (iek():esrg]bus? t%ressuec%cﬁo(i)sese\(/\lf(v:ﬁicmhogzrsr;ieng :2
artifacts of our testbed configuration. . : L o -

) g. ) ) signs like SAR fail to address), RSA has to sacrifice some degree
Impact of Imaging Angle.  Like [25], we found thatthe imaging  of imaging precision without using the phase informdtforAs a
quality depends on the imaging angle, defined by the relative loca- resyIt, our design seeks to identify the overall shape of an object
tion of TX to the object and the trajectory of RX. Specifically, 0 gyface (location, orientation, surface boundaries, material), rather
identify the object, TX's beam should cover the object and the re- hap, fine-grained details such as individual keys on a computer key-
flected signal should reach RX along its trajectory. Our system ad- poard. Secondour design is unable to accurately image small ob-
dresses this issue by performing object sensing and RX movementjects |t can detect and locate a wrench handle (of 2.5cm width),
planning before running actual imaging (as discusselin 85). This ¢ the detected width varies between 1cm to 5cm. It cannot lo-
also helps to reduce the amount of movement required to detect thecate 5 keyring because the reflection is too weak to be captured
overall object shape. For example, we have tested our algorithmp,y our HX| radios. To recognize these small objects, one could
by varying the object orientation relative to TKe. the angle of
inci_dent, between 3Dand 4_5” and found that it always provit_jes 13Shape deviation is defined by the maximum difference between
an ideal RX movement trajectory, and the subsequent imaging re-he actual object surface and the imaged object surface projected
sults remain consistent across these experiments. We also founcbnto the object surface’s principal axis.
that RX’s actual movement can deviate from the ideal trajectory by 14|n practice, not requiring phase information can be an advantage,
at least 7 without noticeable impact on imaging quality. since most COTS radios do not report phase but only RSS values.




Ground truth Detected Position Detected Shape
Center location error | Orientation Detected | Shape deviation| Width error
Objects in FigurgB Shape [ Radius| Width || Median Max error (Max) curvature | Median| Max | Median | Max
(a) Aluminum Jar Convex | +10.0 | 10.00 4.55 8.11 0.29° Convex 1.59 2.22 1.00 2.33
(b) Steel cylinder Convex | +15.0 | 15.00 4.43 4.98 0.51° Convex 1.46 1.78 1.03 1.88
(c) Curved steel surface Convex | +29.0 | 21.21 7.26 9.47 0.69° Convex 1.47 1.93 2.67 4.22
(d) Curved steel surface Concave| —29.0 | 21.21 6.64 7.65 0.90° Concave | -1.64 | -1.59 1.21 1.79
(e) Curved steel surfacé Convex | +23.0 | 22.63 5.51 7.37 1.05° Convex 4.46 6.35 0.91 3.59
(f) Metal desktop front Flat 400 06.72 2.82 3.64 0.49° Flat 0.13 0.62 0.82 1.02
(9) Plastic keyboard Flat 400 10.00 4.44 7.31 0.81° Flat 0.16 0.36 2.69 | 4.16
(h) Cardboard box Flat 400 18.00 4.31 5.13 0.72° Flat 0.15 0.28 2.41 3.00
(i) Wood board Flat 400 22.00 3.83 8.73 0.44° Flat 0.43 0.68 3.09 | 417
(j) Plastic battery case Flat +00 23.00 2.06 3.17 0.47° Flat 0.28 0.48 1.70 3.51
(k) Plastic monitor Flat —+o00 26.00 4.07 6.29 0.45° Flat 0.10 0.11 0.64 1.06
(I) Metal desktop side Flat +00 28.28 2.69 2.95 0.58° Flat 0.12 0.12 1.78 | 3.16

Table 1: RSA imaging performance in terms of error in object centerposition and orientation, detected curvature type, deviation of
overall shape, and error in object width (surface boundary). Allthe numbers are in the unit of centimeter except for the orientation

error and curvature type.

Obiject (Material) Reﬁzgg‘ofﬁeliss Top 3 Matches (out of 39)

Desktop (Metal) 0.3dB Metal, Quartzite, Glass

Box (Cardboard) 6.1dB Cardboard, Pertinax, Acrylic glasg

Monitor (Plastic) 7.9dB Chipboard, Fiberboardlastic
Board (Wood) 12.7dB Wood, Brick, Breeze block

Cylinder (Metal) 0.3dB Metal, Quartzite, Glass

Table 2: Results of RSA material detection.

use a stronger radio, or move TX and RX much closer to the ob-
ject, e.g.<0.5m which becomes a near-field scenario and requires
a new imaging desigrirhird, the accuracy of width estimation de-

pends heavily on the RX movement distance. The amount of RX

movement distance required to maintain high precision increases

linearly with the sensing range and object size. We found that for
our HXI testbed and all the test objects, 1 meter RX movement
is sufficient. Our RX movement planning also predicts the same
trajectory length (sed %5).

6.4 Robustness to Noise

While Tabld1 lists the imaging result when the TX/RX position-
ing error is bounded bg§cm, we expand our noise model to explore
RSA's noise tolerance. We found that RSA's performance is insen-
sitive to trajectory errors when the deviation is bounded txym.
Thus we focus on the TX/RX position errors. Specifically, we pick
X as the maximum location error (deviation from the ground truth),
draw a circle of radiusX around the ground truth and randomly
pick a point on the circle as TX’s relative location to RX. We re-
peat this 20 times peK and report the maximum imaging errors.
Using object (g) as an example, Figlile 9 plots the maximum er-
ror in center location and width estimation fé&f between 0 and
20cm. We see that both errors grow gracefully wih indicating
that RSA is robust against TX/RX positioning errors. We observe
this same trend for all objects.

6.5 RSAvs. SAR and unfocused SAR

We also compare RSA with SAR and unfocused SAR (as de-
scribed by existing work[52]). Since both SAR algorithms do not
offer curvature and material information, we only evaluate object
center location error and width error. Specifically, for each scenario
defined by TX/RX positioning error, RX trajectory, and the object,
we compute the amount of error reduction achieved by RS@,

width error (SAR) center location error (SAR) H H
width error (RSA) or center location error (RSA) We report the min, medlan'

stances of position errors for a given range Because unfocused
SAR is highly sensitive to the choice of RX movement distance, we
use 0.5 meter for unfocused SAR (which provides the best overall
performance across all the objects), and 1 meter for RSA and SAR.

Figure[I0 lists the error reduction factor of RSA. For center
point estimation, SAR and unfocused SAR have very similar per-
formance[[52], so we only report one. We see that RSA can effec-
tively reduce the imaging error. This is particularly true for width
estimation — the median reduction factor is 2-6.7 (over unfocused
SAR) and 2.9-8.2 (over SAR); while the maximum value can reach
18 and 38 respectively. Also, width error reduction peaks at zero
TX/RX position error, confirming RSA is highly robust against tra-
jectory errors. Finally, RSA reduces errors in center point estima-
tion by a factor of 1.2-2.32 (median). This is mostly due to the
iterative search proces4(84.6).

6.6 Microbenchmarks

RX Movement Distance. Figure[T1 compares the object width
error at different RX movement distances. We see that RSA follows
the same trend as noise-free SAR: imaging error reduces with mov-
ing distance and gradually converges to a stable value. This aligns
with the theoretical limit in Eq[{]1) where increasing aperture (via
RX movement) leads to higher imaging precision. Unfocused SAR,
however, is highly sensitive to this parameter.

RSS Measurement Frequency. This factor translates into the
choice of N, the number of measurements for a given movement
distance. In practice, we want to minimize measurement frequency
to save energy. Yet insufficient number of measurements reduces
the accuracy of our model fitting. Our results in the above perform
one measurement per 1cm. At a slow movement speed of 0.5m/s
(1.1mph), the measurement frequency is once per 20ms. We found
that the results remain the same even at a lower frequency of once
per 80msice. once per 4cm).

Beam Steering Granularity.  Using an electronically controlled
mechanical rotator, our testbed can steer antenna beam in incre-
ments 0f0.15°. While our experiments above use data frafn
steering, we also perform imaging undeil5°, 3° and5° steer-

ing to examine the impact of antenna hardware (steerable phased
arrays). To separate its impact on localization, we use the same
TX/RX localization result ofl ® across all the experiments. Our re-
sults show that® — 3° steering is an efficient choice — increasing
granularity t00.15° reduces width error by: 0.5¢m while relax-

and max values across the eleven objects, 10 trajectories and 20 ining to 5° doubles the width error.



TX/RX center location error (SAR)| width error (unfocused SAR width error (SAR)
Positioning || center location error (RSA) width error (RSA) width error (RSA)
Error (cm) || Median [ Min Max Median | Min Max Median| Min | Max
1.20 | 1.00| 2.07 6.71 | 3.88| 17.95 6.92 | 3.16| 19.09
1.72 | 1.24| 277 444 | 259 | 11.44 8.20 | 4.59| 38.33
1.72 | 1.44| 2.63 3.23 | 1.27 6.67 5.06 | 3.34| 10.39
1.85 | 1.62| 3.83 232 | 111 5.29 290 | 1.84| 6.89
232 | 147| 278 2.18 | 1.01 3.82 3.05 | 1.44| 6.09
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, ~_ DX/RX Positioning Error (Cm)l Figure 10: Comparing RSA to SAR and unfocused SAR in terms of theatio of error
][:llglgure_QH RS;B\S Imaging errors scale grace-  nqer SAR (or unfocused SAR) and error under RAS. The RX trajectory errors are
ully with TX/RX position errors. RX tra-  rasent in all the experiments. Since the performance of unfocesl SAR is sensitive

jrﬁztr?trsy noises are present for all the experi- 1, px moving distance, we configure it as 0.5 meter while SAR and RASse 1 meter.
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Figure 11: Impact of measurement config-
urations on RSA imaging performance, in Figure 12: “Realistic” case study of RSA imaging: a drone seeks to late the small
terms of width error. metal object while avoiding a nearby obstacle.

(a) Scenario setup (b) Imaging result (top view)

6.7 Case Study: Multiple Objects Detection tect (metal) objects [8,]17, 15, BB.129,.140, 12]. A recent work

Consider a scenario in Figuigl12(a), where a drone uses RSAbUilt WiFi imaging using OFDM and large phased arrays (avail-
imaging to locate an objedte. a square metal box of size 8crBcm. able on APs) and discussed the r_esolution limitation due to its large
The target rests on a wood floor with a nearby larger (metal) object Wavelength[[25]. Our work considers 60GHz (mmwave) commu-
(size 18cmx18cm) as the obstacle. To locate (and pick up) the Nications because it offers several desirable qualities for mobile
object, a drone needs to recognize both objects, with the help ofimaging when compared with WiFi: tiny wavelength, high direc-
another drone as TX. tionality, stable and predictable signal propagation. In addition to

With two testbed radios emulating drones, they first perform Providing high-resolution{1-5cm), our imaging algorithm is also
60GHz localization to locate each other. They then coordinate to different by using just RSS measurements (rather than phase [25])
sense the objects. Since the two objects are in proximity they canWithout requiring specialized hardware.g. 8. (7]). Our work was
be covered by a single TX beam. After TX focuses its beam on the inspired by recent 60GHz radar designsl[52, 44] that apply SAR
two objects (and sends beacon signals), RX moves in two directions!0 detect object surface location and boundary in absence of noise.
sequentially to determine location, curvature, width and height, and Our work develops a new imaging solution that is _FObUSt against
material. The visual imaging result and the ground truth are shown Noise and also detects surface curvature and materials.
in Figure[I2(b) where RSA recognizes two flat metal objects, their

overall shape/size, and the wood floor in between. 8. LIMITATIONS AND FUTURE WORK

7. RELATED WORK Our proposed 60GHz mobile radar detects the location, orienta-
tion, curvature and surface boundaries of nearby objects using only

o ; : I signal strength measurements, and achieves cm-level precision.
recognition|[16, 3¢, 33]. Detecting object position and shape, how- 2 . . ) .
9 ] g object p p Several limitations remain before we can realize a high preci-

ever, requires bulky, high-end camerag(Google’s Project Tango . . . ) I~
requires an infrared depth camera and a fish-eye lens). These mech>°": environmental mapping system using RF reflectidfisst,

anisms require good visibility and cannot reliably identify object our Imaging WOka when both TX gnd RX have line-of-sight to
material. RSA takes a low-cost RF-based approach leveraging mo-the target object because 60GHz signals cannot penetrate walls or
bile networking chipsets, and its 60GHz reflected signals reveal key most ObjECtS.TO perform environmental mapping in 3D, TX _and
properties of the object surface without any light. RX (e.g, mobile qu'Ces) must have away to intelligently navigate

) across space while coordinating their positioBscondso far we
Sonar and Radar Systems.  These systems have been applied oy consider the general shape of static and regular object surfaces
to many flelds[[A'[_a], from mapping terrain contour, tracking moving \yhere reflected RSS is stable over time and predictable via a model.
targets, to detecting concealed weapons at secquty checkpoints [17 ¢, moving or irregular object®.g, humansand detailed shape,
6,[10,[34[.4P. 46]. They use special hardware like X-Ray or bulky ¢ g keys on keyboardwe need new models to define the corre-
lenses to achieve high precision, which are too large/expensive for |ation between object shape and reflected signal patt&inally,
mobile devices. RSA differs by using commodity 60GHz network- \ye need to develop an algorithm for TX and RX to reliably and
ing chipsets that are being integrated into today’s mobile devices. jieratively scan individual surfaces while moving in unknown envi-
RF-based Systems. Researchers have explored WiFi-band so- ronments. Such schemes must be robust and work reliably in large
lutions to detect human motion, activity and gestures, and to de- environments with complex objects.(.caves, collapsed tunnels).

Camera-based Imaging. Camera is widely used for object
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