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Abstract—In order to cope with the severe path loss,
millimeter-wave (mm-wave) systems exploit highly directional
communication. As a consequence, even a slight beam mis-
alignment between two communicating devices (for example,
due to mobility) can generate a significant signal drop. This
leads to frequent invocations of time-consuming mechanisms
for beam re-alignment, which deteriorate system performance.
In this paper, we propose smart beam training and tracking
strategies for fast mm-wave link establishment and maintenance
under node mobility. We leverage the ability of hybrid analog-
digital transceivers to collect channel information from multiple
spatial directions simultaneously and formulate a probabilistic
optimization problem to model the temporal evolution of the mm-
wave channel under mobility. In addition, we present for the first
time a beam tracking algorithm that extracts information needed
to update the steering directions directly from data packets,
without the need for spatial scanning during the ongoing data
transmission. Simulation results, obtained by a custom simulator
based on ray tracing, demonstrate the ability of our beam
training/tracking strategies to keep the communication rate only
10% below the optimal bound. Compared to the state of the art,
our approach provides a 40% to 150% rate increase, yet requires
lower complexity hardware.

I. INTRODUCTION

The fifth generation of mobile communications (5G) is
envisaged to deliver multi-Gbps wireless connectivity and to
enable a plethora of new applications. It is well established
that achieving extremely high data rates is impractical with
currently available 4G systems due to the heavily congested
and fragmented spectrum below 6 GHz. In view of this, the
large amount of unoccupied spectrum in the millimeter wave
(mm-wave) bands above 6 GHz becomes very appealing [1].

Communications at mm-wave frequencies are challenging
since the channel suffers from severe path loss, atmospheric
absorption, human blockage, and other environmental obstruc-
tions [2]. The short wavelength of the mm-waves allows beam-
forming arrays with many antennas to be implemented in a
small form factor, thus providing sufficient link margin. On the
other hand, highly directional communications complicate the
link establishment and maintenance between an Access Point
(AP) and a User Equipment (UE). In fact, AP and UE must
perform a time-consuming beam training procedure in order to
determine the best directions of transmission/reception, which
incurs significant overhead (and waste of network resources).
The problem is exacerbated in scenarios with mobility, since
even a slight beam misalignment or environmental changes,

such as link blockage, device rotation, etc., can cause con-
siderable signal drop. To sum up, fast and efficient beam
training/tracking strategies are of paramount importance to
maintain seamless connectivity in a mm-wave network with
node mobility.

The design space of beam search proposals in the literature
can be divided into three main categories: (1) sequential
scanning strategies [3], [4]; (2) adaptive algorithms employing
antenna patterns with configurable beamwidth [5]–[8]; (3)
parallel beam search with simultaneous, multi-direction scan-
ning [9], [10]. The vast majority of these works concentrates,
however, on static networks without investigating the impact
of the training latency on the overall Quality of Service (QoS)
of realistic networks with mobility. Within the state-of-the-
art solutions on this subject, a further subdivision can be
made on the basis of the employed mm-wave transceivers.
Since traditional multiple-input multiple-output (MIMO) dig-
ital beamforming (DBF) is, at present, impractical at mm-
wave frequencies because of cost and power consumption
constraints, analog beamforming (ABF) and hybrid analog-
digital beamforming (HBF) represent the only feasible so-
lutions. Using ABF [3], [4] provides poor performance for
two main reasons. First, the constant amplitude and the
low phase resolution constraints of the mm-wave RF phase
shifters [11] give rise to antenna sectors with high sidelobes
and reduced flatness, leading to imprecise beam training.
Second, the use of a single RF chain allows for only one
communication beam, thus resulting in reduced throughput and
high-overhead beam search. In HBF architectures [5]–[10],
the precoding/combining operations are divided between the
analog and digital domains, while using much fewer RF chains
than antenna elements. The availability of multiple RF chains
enables parallel, multi-stream processing and simultaneous
multi-direction scanning.

In this paper, we consider a scenario consisting of a fixed
AP and a mobile UE, both equipped with a low-complexity
mm-wave HBF transceiver and communicating with direc-
tional antenna patterns. Our overall objective is to maximize
the communication rate over time. To this end, we propose
two strategies, a deterministic one for beam training and
a probabilistic one for beam tracking, to rapidly estimate
multiple, suitable directions of communication between AP
and UE. Here, beam training is a beam search mechanism
without any prior knowledge that explores the entire azimuthal
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domain and that is carried out both in the initial access phase
and, periodically, during the AP-UE communication. Beam
tracking, instead, is an ongoing estimation that, starting from
the current steering directions, probabilistically infers how
they evolve due to node mobility. The main contributions of
the paper are as follows:

• We design a two-stage beam training protocol that ap-
proaches the performance of an exhaustive search over
all possible beam directions, but has very low latency and
uses implicit feedback (i.e., it does not require a dedicated
feedback channel). The key aspect of our beam search
strategy is a particular HBF combiner matrix which
takes a reduced number of sequential, multi-stream signal
measurements to cover all the possible combinations of
antenna weights.

• We propose, to the authors’ knowledge for the first
time in the mm-wave HBF context, a beam tracking
algorithm that is able to track the mm-wave channel
dynamics without any training slots, but simply using
known portions of the data packet (e.g., the preamble).
To this end, we formulate a probabilistic optimization
problem, solved by gradient descent, whose objective
function is designed so as to model the temporal evolution
of channel paths due to device movements. Note that this
problem is quite different from the problem of MIMO
channel estimation using known pilot symbols.

• We develop a simulation framework to assess the perfor-
mance of the proposed beam training/tracking strategies
and compare them against existing approaches in the
literature. Specifically, we propose and implement a fast
protocol for link establishment and maintenance under
user mobility which dynamically switches between beam
training and beam tracking based on the real-time QoS.
Our simulator integrates a ray-tracing tool to accurately
model the time-varying mm-wave channel, taking into
account blockage, ray clustering, and mobility effects,
and guaranteeing spatial consistency over time.

Numerical experiments show that the performance provided
by our solution is very close to the optimal “oracle-based”
algorithm. Furthermore, the high accuracy and reduced latency
overhead characterizing our beam training/tracking strategies
result in a significant rate increase over state-of-the-art solu-
tions which in addition require higher complexity hardware.
Compared to ABF solutions which share the disadvantage
of converging towards only one communication beam, our
approach based on HBF is capable of achieving multiplexing
gains by simultaneously transmitting multiple parallel data
streams over different paths.

We use the following notation in the paper. A is a matrix, a
is a vector, and A denotes a set. ‖a‖2 is the Euclidean norm of
a, while ‖A‖F , |A|, AT , AH , and A−1 denote the Frobenius
norm, determinant, transpose, Hermitian, and inverse of A,
respectively. [A]B,: ([A]:,B) are the rows (columns) of the
matrix A indexed by the set B, and I is the identity matrix. E[·]
denotes the expectation operator and d·e the ceiling function.

II. RELATED WORK

Most of the literature on mm-wave beam search focuses on
static scenarios without user mobility [4]–[8], [10]. Such an
assumption may lead to wrong conclusions about the actual
performance of the algorithms in real networks. A comparative
analysis of initial access techniques in mm-wave networks is
presented in [4], where performance metrics such as detection
probability and delay are analyzed. The problem of tracking
the AP-UE beams to handle the channel dynamics is left
as future work. The design of HBF codebooks relying on
beamforming vectors with different beamwidths is presented
in [5]–[8], where it is assumed that phase shifters with a
large number of quantization bits are available at mm-wave
frequencies. However, the design of high-resolution mm-wave
phase shifters is extremely challenging [11]. Finally, the si-
multaneous reception from multiple beams to accelerate the
beam search is exploited in [10].

To the authors’ knowledge, only very few works in the
literature address the problem of fast beam search in realistic,
dynamic scenarios with node mobility. A smart beam steer-
ing algorithm for 60 GHz link re-establishment under user
mobility is presented in [3]. The algorithm uses knowledge
of previous feasible sector pairs to narrow the sector search
space, thereby reducing the associated overhead. Numerical
results show that the proposed strategy is very effective, but
still incurs non-negligible latency in complex scenarios with
significant blockage. A temporal channel evolution model for
non line-of-sight (NLOS) mm-wave scenarios is presented
in [9]. HBF at both the AP and UE is considered and a
beam tracking technique based on sequentially updating the
precoder and combiner is developed. However, in [9], the
angle of arrival (AoA) and angle of departure (AoD) deviations
due to mobility are modeled as very small uniform random
variables, which are not appropriate to characterize actual
mobility or significant, sudden changes in the channel due to
obstacles. In [12], a linear dynamic system model to analyze
the occurring errors due to link blockage and device movement
is proposed. Based on the model, the authors propose two
probing protocols that are effective in identifying the beam
errors. However, no beam training/tracking strategy is imple-
mented in order to find alternative antenna sector pairs once
the beam errors are identified. Finally, it is worth highlighting
that none of the above-mentioned works [3], [9], [12] analyzes
the impact of the beam search accuracy and overhead on the
evolution over time of the achievable rate under mobility.

III. MOTIVATION AND SYSTEM MODEL

The use of highly directional antennas with very narrow
beams at both the AP and UE complicates the mm-wave link
establishment and maintenance. As for the link establishment,
the 60-GHz IEEE 802.11ad standard [13] implements a time-
consuming beam training procedure based on an exhaustive
search to find the most suitable directions of transmission
and reception. Once a connection is established, the link
quality degradation due to user mobility is handled through
beam refinement procedures that search around the previous
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Fig. 1. Block diagram of the AP-UE mm-wave transceiver architecture
implementing HBF.

sector pair in order to determine a new combination of beams
with improved link quality. However, in large and crowded
scenarios with mobility, such procedures may fail to cope
with high channel dynamics, which would necessitate fast
mechanisms to scan a large angular domain (instead of just
adjacent directions) to find alternative communication links.
In case simply probing adjacent beams is unsuccessful, a
new exhaustive beam search procedure has to be performed.
This leads to a high latency which deteriorates the overall
system performance. Motivated by this challenging problem,
we propose two smart and efficient strategies, one for beam
training and one for beam tracking, to accelerate the link
establishment and maintenance between mm-wave devices in
mobility scenarios.

We consider a mm-wave system with one fixed AP and
one moving UE, both featuring the same HBF architecture
considered in [5], [6], [8]–[10] and depicted in Fig. 1. The
AP is equipped with a uniform linear array (ULA) of MAP
isotropic radiators connected to NAP RF transceiver chains
through a network of analog/RF phase shifters. The number
of antennas and RF transceiver chains at the UE side is
MUE and NUE respectively. The HBF transceiver configuration
allows AP and UE to communicate via NS data streams,
with NS≤min(NAP, NUE). To this end, the AP applies an
NAP×NS digital baseband (BB) precoder PBB followed by
an MAP×NAP RF precoder, PRF, to the symbol sequence to
be transmitted. The transmit power constraint is ensured by
imposing ‖[PRFpBB]:,i‖22 = 1, for i = 1, 2, ..., NS. The final AP
precoder is then given by the MAP×NS matrix P = PRFPBB.
The transmitted signal passes through the MUE×MAP channel
matrix H and impinges on the UE antennas together with
white noise. Since the UE also implements HBF, it is able to
concurrently receive NS streams of data. To do that, it applies
a MUE×NUE RF combiner CRF followed by a NUE×NS digital
baseband combiner CBB. The final UE combiner is given by
the MUE×NS matrix C = CRFCBB.

We assume that AP and UE communicate using the frame
structure in Fig. 2. Two different types of frames can be
allocated: (i) beam training frames, which contain both training
and data transmission phases, and (ii) pure data frames. In
the initial access procedure, the allocation of a training frame
is mandatory, since AP and UE need to determine suitable

Fig. 2. Frame structure encompassing beam training/tracking and data
transmission. Data slots can be indifferently either downlink (DL) or uplink
(UL) slots.

initial directions of transmission. Once the initial access is
accomplished, pure data frames with directional antenna pat-
terns at both the AP and UE are used. As explained later
in §V, the beam tracking can be performed with pure data
frames, i.e., using known portions of just two data slots (one
for UE beam tracking and one for AP beam tracking) without
requiring any dedicated training slots. The allocation of a
training frame to perform a new full beam search from scratch
can be triggered periodically or when the link quality falls
below a certain threshold. Based on the work in [14], [15],
we assume frames of duration T=10 ms, each divided into
100 slots of duration Tslot=100 µs, a sufficiently small value
to ensure channel coherence at mm-wave frequencies.

As experimentally demonstrated in [16], the mm-wave
channel between AP and UE is composed of “ray clusters”,
each cluster carrying a fraction of the total power. Defining
Tslot=100 µs as the time granularity of our system, we can
express the MUE×MAP channel matrix at each time slot as:

H =

√
MAPMUE

L

K∑
k=1

L∑
`=1

αk`aUE(θk`)aHAP(φk`) (1)

where K is the number of clusters, L is the number of sub-
paths per cluster, aUE(AP)(·) is the ULA response vector at the
UE (AP) whose expression can be found in [8, Eq. (3)], and
αk` is the complex gain on the `-th sub-path of the kth cluster,
which includes path loss, Doppler shift, and delay spread
effects. The variables θk`∈[0, 2π] and φk`∈[0, 2π] are the `th

AoD/AoA of the kth cluster at the UE and AP respectively.
In this work, we assume channel reciprocity [5], [6], that is,
the AP AoDs in the downlink correspond to the AP AoAs in
the uplink. The same applies to the UE as well. Note that,
in order to simplify the notation, we consider the AP and
UE implementing horizontal (2-D) beamforming only, which
implies that all scattering happens in the azimuthal domain.
Extension to planar antenna arrays and, therefore, to 3-D
beamforming is straightforward.

IV. PSEUDO-EXHAUSTIVE BEAM TRAINING (PE-TRAIN)

The use of directional antennas for mm-wave communi-
cation requires that AP and UE find suitable directions of
transmission, both in the initial access phase and, periodically,
during the communication. As illustrated is Fig. 2, if no
feedback channel is available, two separate stages are required
in the beam training phase, namely UE beam training (using
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downlink training sequences from the AP) and AP beam
training (using uplink training sequences from the UE). In
the following, we propose a pseudo-exhaustive beam training
(PE-Train) protocol which is able to search over all possible
beam directions with very low latency overhead. It uses
omnidirectional transmission at the AP for UE beam training,
and simultaneous, multi-stream transmission over the best
estimated directions at the UE for AP beam training.

A. Stage I: UE beam training

We consider a mm-wave AP with the HBF architecture in
Fig. 1 performing omnidirectional transmission of a training
sequence s[t], for t = 1, 2, ..., Ts, in a reciprocal channel.
Arranging s[t] into the 1 × Ts row vector s, the MUE × Ts
discrete-time signal R impinging on the UE antennas becomes:

R =
√
PtHpos + N (2)

where Pt is the transmit power, H is the channel matrix,
po = [1, 0, 0, ..., 0]T is the MAP×1 omnidirectional precoding
vector used at the AP, and N is a MUE × Ts matrix with
independent, Gaussian-distributed complex noise with mean
zero and variance σ2. The lack of a dedicated RF chain for
each antenna makes it impossible for a HBF transceiver to
directly access R. In fact, R is inevitably processed by a
hybrid combiner which compresses it into a reduced dimension
space, with consequent loss of information. We tackle this
problem with the following strategy. First, we design an
easily invertible, orthogonal MUE × MUE matrix W (e.g.,
a Hadamard matrix) representing a basis for the full space
of antenna configurations. Then, since we cannot directly
apply W to R because of the HBF limitations, we perform
multiple, consecutive measurements, each time using as hybrid
combiner a different sub-matrix of W. Thanks to the properties
of W, we can reconstruct, at the end of the procedure, an
estimated version of R and process it through a spatial filter
matrix to derive the received signal power from each angular
direction. Specifically, we build W such that the elements of√
NUEW belong to the feasible set of phase-shifter weights.

For example, in the case of 2-bit phase shifters, the elements
of
√
NUEW can assume only four values, namely ±1 and

±j. Then, we divide W into NW = dMUE/NUEe sub-matrices
with dimensions MUE×NUE, i.e., W = [W1, W2, ..., WNW ].
For each Wi, with i = 1, 2, ..., NW, we build the RF
combiner CRF,i =

√
NUEWi and the baseband combiner

CBB,i = INUE/
√
NUE, where INUE is the NUE × NUE identity

matrix. The overall hybrid combiner Ci = CRF,iCBB,i = Wi is
then applied to R at NW successive instants in order to extract
the following signal measurements:

Yi = WH
i (
√
PtHpos + N), i = 1, 2, ..., NW (3)

which can be concatenated as Y = [YT1 , YT2 , ..., YTNW
]T . Pure

channel information can be extracted by removing the con-
tribution of the training sequence, which is supposed to be
known at the UE. To do this, we compute Ŷ = YsH/Ts,
whose expected value E[Ŷ] =

√
PtWHHpo gives direct access

to channel-only information. The UE can now post-process the
measurement Ŷ to obtain:

Y = AHUE(W
H)−1Ŷ (4)

where AUE = [aUE(θ1), aUE(θ2), ..., aUE(θN )] is a spatial fil-
ter matrix and θi = 2πi

N , i = 1, 2, ..., N , is a set of
N equally spaced discrete angles covering the 360◦ az-
imuthal domain. As evident from Eq. 4 and from the ex-
pression E[Y] =

√
PtAHUEHpo, the N × 1 vector |[Y]i|2, for

i = 1, 2, ...N , contains the expected signal power impinging
on the UE from each angular direction. Such information can
be directly used by the UE to estimate its Lest most suitable
(i.e., the most powerful) directions of transmission/reception
θ = [θ1, ..., θLest ]. Since the product AHUE(W

H)−1 in Eq. 4 can
be precomputed and stored in the UE memory, the computa-
tional cost to estimate Y is just a matrix-vector multiplication.

B. Stage II: AP beam training

At the end of Stage I, the UE initiates the AP beam
training stage. Specifically, the UE employs the HBF algo-
rithms in [10] (considering 2-bit RF phase shifters) to design
a multi-beam/multi-stream precoder P with the narrowest
synthesizable beamwidth. Such a precoder is then used to
simultaneously transmit orthogonal training sequences through
the set of directions θ estimated in Stage I. In order to reduce
the inter-beam interference, Golay training sequences encoded
by orthogonal Walsh spreading codewords are used. In fact,
Golay sequences possess very good auto-correlation, which
helps protecting the Walsh codes from losing orthogonality
due to multipath. Concretely, for each transmit direction
i = 1, 2, ..., Lest, with Lest ≤ NUE, the UE emits a training
signal si[t], for t = 1, 2, ..., Ts. The overall set of transmitted
symbols can be arranged into a matrix S, with dimensions
Lest × Ts, where the i-th row contains the time-domain
sequence transmitted over the i-th direction. As in Stage I, the
AP builds a MAP ×MAP matrix W and configures its hybrid
combiner to perform NW = dMAP/NAPe signal measurements
at successive instants:

Yi = WH
i (ρHPS + N), i = 1, 2, ..., NW (5)

where ρ =
√
Pt/Lest for equally distributed power within

the streams. Similar to what is done in Stage I, the AP then
concatenates the measurements, estimates Ŷ = Y

√
LestSH/Ts,

and processes it with the spatial filter matrix AAP to obtain Y.
The procedure allows the AP to estimate its Lest most suit-
able directions of transmission/reception, φ = [φ1, ..., φLest ].
In order to establish a multi-beam, multi-stream data link
between AP and UE after beam training, it is necessary that
Lest ≤ min(NAP, NUE). Note that the computational cost of
estimating one rather than more than one suitable directions
for communication via PE-Train is the same.

The major algorithmic steps required by the PE-Train proce-
dure are summarized in Algorithm 1 for MAP and MUE integer
multiples of NAP and NUE respectively. The beam training
overhead, i.e., the total time required to complete the PE-
Train procedure, is given by the sum of Stage I and Stage II
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times: τ = τPE-Train = Tslot (dMUE/NUEe+ dMAP/NAPe). This
represents a significant speed-up compared to exhaustive beam
training, where the time required to complete the beam search
is τ = τEXH = TslotN

2, where N is the same angular resolu-
tion of our PE-Train strategy.

Algorithm 1 PE-Train protocol
Initialization: Pre-compute and store AAP and AUE
Stage I: UE beam training

1: AP in omni mode w/ precoder po = [1, 0, 0, ..., 0]T

2: UE pre-computes and stores its MUE ×MUE matrix W
3: NW =MUE/NUE
4: for i ≤ NW do
5: Wi = [W]:,(i−1)NUE+1:iNUE

6: end for
7: for i ≤ NW do
8: UE measures Yi = WH

i (
√
PtHpos + N)

9: end for
10: Y = [YT1 , ..., YTNW

]T ; Y = AHUE(W
H)−1YsH/Ts

11: for ` ≤ Lest do
12: k = argmaxj |[Y]j |2; θ` = 2πk/N

13: Y = Y− [AUE]
H
:,kAUE[Y]k

14: end for
15: return θ = [θ1, ..., θLest ]
Stage II: AP beam training
16: UE in multi-beam mode over θ w/ hybrid precoder P
17: AP pre-computes and stores its MAP ×MAP matrix W
18: NW =MAP/NAP
19: for i ≤ NW do
20: Wi = [W]:,(i−1)NAP+1:iNAP

21: end for
22: for i ≤ NW do
23: AP measures Yi = WH

i (
√
Pt/LestHPS + N)

24: end for
25: Y = [YT1 , ..., YTNW

]T ; Y = AHAP(W
H)−1Y

√
LestSH/Ts

26: for ` ≤ Lest do
27: k = argmaxj |[Y]j,`|2; φ` = 2πk/N
28: end for
29: return φ = [φ1, ..., φLest ]

V. PROBABILISTIC BEAM TRACKING (P-TRACK)

The PE-Train procedure described in the previous section
can be used for initial access beam training, but can also
be triggered periodically in order for AP and UE to update
their steering directions. However, harsh environments with
frequent blockage could lead to an excessive number of
beam training requests, which incur significant overhead and,
consequently, reduced throughput. For this reason, efficient
beam tracking strategies are required in order to rapidly refine
the beam directions without resorting to full beam training.

In this section, we propose a probabilistic beam tracking
(P-Track) mechanism which is able to track the mm-wave
channel dynamics under node mobility (and steer the device
beams accordingly) without requiring dedicated training slots.
We assume a fixed AP and a moving UE that have just

accomplished the PE-Train procedure and are communicating
using pure data frames (i.e., without dedicated training slots)
and highly directional beam patterns. For the sake of brevity,
we consider only the UE beam tracking procedure, i.e., the
procedure by which the UE exploits downlink data slots to
refine its beam directions. An identical strategy is applied for
AP beam tracking using uplink data slots. The P-Track strategy
is based on a probabilistic model which does not require the
devices to perform any spatial scanning during the ongoing
data communication. It is able to track the most dominant
directions of the mm-wave channel using just known portions
of the data packet, e.g., the preamble. To do that, we require
that two conditions are satisfied: (1) the preamble is correctly
detected by the UE in at least one downlink slot within the
frame; (2) in such a downlink slot, the UE can access the
complex output YRF from the RF combiner CRF (which can be
done by saving the preamble samples right before the baseband
combiner CBB):

YRF = CHRF

(√
Pt/LestHPS + N

)
(6)

where Pt is the AP transmit power, Lest is the number of par-
allel data streams transmitted by the AP using the MAP×Lest
hybrid precoder P, and S is the Lest×Ts matrix encompassing
the packet preamble transmitted simultaneously by the AP over
Lest directions. We assume that AP and UE are communicating
using the narrowest beam patterns they are able to synthesize,
which are steered towards the spatial directions estimated in
the most recent PE-Train/P-Track procedure. In order to reduce
the interference among the parallel streams, we assume that,
for the preamble, the AP adopts Golay sequences encoded with
orthogonal Walsh spreading codewords. The reason behind the
choice of using YRF for beam tracking, instead of the signal
Y = CHBBYRF after the baseband precoder, is that the former
includes much more information about the channel than the
latter which is defined in a lower dimensional space. With
YRF it is possible to provide channel information for a wider
angular domain compared to the very narrow angular sector
covered by the actual data communication beam pattern.

A. Probabilistic optimization problem

Since the AP is transmitting relevant data to the UE using
pure data frames, the UE cannot perform any beam scan, but it
must keep its antenna steered towards the directions estimated
in the most recent PE-Train/P-Track execution1. We propose a
probabilistic estimation based on the analysis of the preamble
signal YRF received by the UE over the current antenna pattern
in a downlink data slot. The UE is moving along a mobility
pattern or route, so the objective is to update, in real time, its
antenna pattern based on the estimation of a new set θ∗ of

1Here, the problem is more complex than channel estimation in MIMO
systems. In fact, while MIMO transceivers (based on DBF) are able to instan-
taneously collect full spatial information about the channel, HBF transceivers
would usually need several estimation steps, during which the beams are
steered to scan different spatial directions.
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suitable directions. This can be translated into the problem of
finding the θ∗ that maximizes the probability P (θ∗|YRF):

θ∗ = argmax
θ

P (θ∗|YRF) (7)

which cannot be easily handled because both the prior distri-
bution of the channel and the hybrid precoder P used by the
AP are unknown. Applying the negative logarithm function
and the Bayes theorem to the objective function in Eq. 7,
and observing that the term P (YRF) has no impact on the
optimization, we obtain:

θ∗ = argmin
θ

[OP (θ
∗) +OY (θ

∗)] (8)

where we designate OP (θ∗) = − log[P (θ∗)] as prior objective
function and OY (θ

∗) = − log[P (YRF|θ∗)] as measurement
objective function. Intuitively, OY (θ∗) models those changes
in the mm-wave channel, due to user mobility, that are directly
reflected into the received signal. In contrast, OP (θ∗) captures
the uncertainties on the previous estimate and propagation phe-
nomena which cannot be inferred from signal measurements.

As for the prior objective function OP (θ
∗), a simple ap-

proach is to define the prior distribution P (θ∗) as a set of in-
dependent Gaussian distributions for each θ`, ` = 1, 2, ..., Lest,
with mean θ` equal to the previous estimated direction and
standard deviation σθ` = σθ` + f(SNR). The term σθ` models
the uncertainty of the estimation due to continuous angular
variations induced by the UE movements (device rotation and
translation), while f(SNR) is a convenient, monotonically
decreasing function of the SNR. This latter term models
the uncertainty of our previous estimation, which is largely
affected by the received signal quality (i.e., the greater the
SNR, the smaller the uncertainty). After removing constant
terms, the following expression for OP (θ) can be derived:

OP (θ
∗) = −

Lest∑
`=1

logP (θ∗) =

Lest∑
`=1

(θ` − θ`)2

2σ2
θ`

(9)

The measurement objective function OY (θ
∗) can be ex-

pressed as:

OY (θ
∗) =

‖D−1VHŶRF − UHAθM‖2F
2σ2

(10)

where UDVH is the economic singular value decomposition
(SVD) of CRF, ŶRF = YRF

√
LestSH/Ts is the redundancy-free

preamble signal from the RF precoder, σ2 is the noise power,
Aθ is a MUE × Lest matrix such that [Aθ]:,` = aUE(θ`), and
M = (AHθ UUHAθ)−1AHθ UD−1VHŶRF is a Lest×Lest matrix.

B. Problem solution

The problem of estimating θ∗ can be transformed into
the problem of minimizing the overall objective function
O(θ∗) = OP (θ

∗) +OY (θ
∗), which can be verified to be non-

convex even for Lest = 1. The minimization strategy we
propose is as follows. Two suitable initial guesses of θ∗, one
for OP (θ∗) and one for OY (θ∗), are selected. A good initial
guess is θ, since it minimizes OP (θ∗). A second good starting

point representing a suitable guess for OY (θ∗) is the set of
directions with maximum received signal power. Starting from
these two initial solutions, since we do not know a priori if
OY (θ

∗) has more weight than OP (θ∗) on the total objective
function O(θ∗), we compute a few steps of gradient descent
for both guesses, select the best solution, and proceed with a
more accurate gradient descent to refine the estimation2.

VI. NUMERICAL EVALUATION

In this section, we carry out numerical experiments to assess
the performance of the PE-Train and P-Track strategies. We
first describe the simulator we developed to evaluate mm-
wave indoor scenarios with mobility. Then, we describe the
simulation scenario, based on which we conduct a numeri-
cal evaluation to compare the performance of our strategies
against existing beam search approaches in the literature.

A. Simulator overview

The main functional blocks of our mm-wave simulator are
outlined in Fig. 3. The simulator allows to draw any UE route
in a given scenario via a graphical user interface. Based on the
route length Lroute and the selected UE speed v, the number
of frames ν = dLroute/(vT )e required by the simulation
are computed. Implicitly, this creates a direct correspondence
between the UE position on the route and the current time
slot. We exploit such correspondence to compute, at each
time slot, the channel matrix H in Eq. 1 through a proprietary
ray tracing program written in C (see the next subsection for
details). The PE-Train and P-Track strategies are implemented
in Matlab and validated as follows (see Fig. 4 for an example
use case). In the UE starting position, the simulator allocates
a training frame to perform the initial access PE-Train proce-
dure and establish a multi-beam/multi-stream directional link
between AP and UE. Specifically, AP and UE employ the
HBF algorithms in [10] (with 2-bit phase shifters) to design
the narrowest synthesizable beams, steered toward the Lest
estimated directions, to be used concurrently during the data
transmission phase. From here on, as long as some QoS or
timing conditions (defined later) are satisfied, pure data frames
are sent. In each frame, a downlink data slot and an uplink
data slot are used by UE and AP respectively to perform
the P-Track estimation and update, accordingly, their steering
directions. If the QoS and timing conditions are not satisfied,
a training frame is allocated in order to perform a thorough
and accurate beam search via PE-Train. Concretely, for each
frame, we compute two types of sum-rate capacity (hereafter
referred to as simply rate):
• The actual rate RD within the current frame is obtained

by computing the rate in each data transmission slot and
averaging it over the number of data slots in the frame.

• The average rate RD over multiple data frames is obtained
by averaging the rate RD over the number of frames since
the latest PE-Train execution.

2Details about the derivation of the objective functions and their gradient
can be found in the appendices of the extended paper available from https:
//arxiv.org/abs/1612.07957/.
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Fig. 3. Overview of the mm-wave indoor simulator used to assess the
performance of beam training and tracking strategies under node mobility.

As for the QoS and timing conditions, we assume that a new
PE-Train execution is triggered periodically every ξ pure data
frames or when the actual rate RD within the current frame is
below a certain percentage of the average rate RD, i.e., when
RD < λRD, with 0 < λ ≤ 1.

B. Ray-tracing module

Geometry-based stochastic channel models in the literature
are not suitable to represent real environments, especially time-
varying scenarios with user mobility, because they are drop
based, meaning that, at every time slot, the channel param-
eters are randomly generated for each AP-UE link. In order
to analyze how the PE-Train and P-Track strategies would
perform in a real scenario, we rely in this paper on a custom
ray-tracing program in C which allows to deterministically
evaluate the non-stationary characteristics of the propagation
channel, including LOS and NLOS transitions, shadowing,
mobility effects, environment dynamics, and blockage. The
key benefit of this approach compared to pure statistical
models is its inherent support for spatial consistency which
allows smooth and continuous time evolution of channel
parameters. As shown in Fig. 3, the ray tracer takes in input the
scenario geometry, the electromagnetic characteristics of walls
and objects, the AP position, the carrier frequency, and the
desired ray-launching resolution (i.e., the angular separation
between two adjacent rays launched). The rays are launched to
cover the entire 360◦ azimuthal domain and their evolution is
computed taking into account reflections, transmission through
objects/walls, and diffraction. At each time slot (i.e., at each
UE location), the output from the ray tracer is used to update,
in real time during the simulation run, the channel matrix
in Eq. 1. To do this, we construct, around the current UE
location, a reception sphere with radius proportional to the
unfolded path length from AP to UE and the ray-launching
resolution [17]. If a ray intersects the sphere, it is taken as con-
tributing to the received signal, otherwise it is discarded. The
ray clustering effect revealed by the experimental campaign in
[16] is obtained by accounting for the contribution of the ten
most powerful rays around the one falling within the reception
sphere. This analysis provides the channel AoDs/AoAs at each
UE location, while the wave-carried electric field of each ray

Fig. 4. Typical use case scenario for our beam training strategies. PE-Train is
used for initial access beam training and triggered periodically to update the
AP-UE steering directions. P-Track, instead, is used to track the mm-wave
channel dynamics under node mobility and steer the device beams accordingly.

is used to compute the corresponding complex gain αk`. Since
both phase and delay of each ray are taken into account, the
Doppler shift effect is inherently included in the computation.

C. Simulation scenario

For the performance evaluation, we replicate the 20×20 m2

office-like layout considered in [3]. As shown in Fig. 5, it
consists of several walls/partitions composed by three different
materials, namely concrete, glass, and plasterboard with a
thickness of 10 cm, 3 cm, and 5 cm respectively, to model a
realistic environment. The scenario geometry and the dielectric
properties of materials are given as input to the ray tracer
for reflection/transmission/diffraction coefficient calculation.
In order to reproduce human blockage effects in a crowded
environment, we randomly place in the scenario 20 blocks
of size 50×50 cm2 with dielectric properties taken from the
experiments on human tissues in [18]. The mm-wave network
consists of a fixed AP, installed in the center of the room,
and a mobile UE walking through three different routes
with increasing complexity, namely Route #1 (straight lines
with one turn), Route #2 (straight lines with two turns), and
Route #3 (curved lines with nine turns). For each route, we
assume that the UE is initially located at the starting point
(represented by the numbered label in Fig. 5) and is moved
with speed v=2 m/s and position update rate of Tslot=100 µs.
Note that we consider an orientation-unaware UE, i.e., a UE
turn causes the beam orientation to change accordingly.

D. Results

In this sub-section, we assess the performance of our
PE-Train and P-Track strategies using our Matlab/C mm-wave
simulator. For performance comparisons, we implement from
scratch the solutions proposed in [3] and [5], and a simplified
version of the IEEE 802.11ad beam training protocol. An
overview of the main characteristics and parameters of the
beam search strategies is given in Table I. As for the 802.11ad
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TABLE I
OVERVIEW OF THE MAIN CHARACTERISTICS AND PARAMETERS OF THE BEAM SEARCH STRATEGIES

Algorithm Triggering strategy Transceiver architecture Algorithm parameters

PE-Train+P-Track Dynamic QoS and
timing thresholds HBF in Fig. 1 w/ λ/2-spaced ULAs,

MAP = 64, NAP = 16, MUE = 24, NUE = 6

2-bit phase shifters, Lest=2, N=1024,
σθ`=π/180 rad, f(SNR) = π/SNR

[5, Algorithm 2]

Fixed QoS threshold

7-bit phase shifters, K=2, Ld=Lest=2, N=1024

[3, Algorithm 1] Unconstrained ABF (phase shifters w/ infinite
resolution and amplitude adjustment),
λ/2-spaced ULAs, MAP = 64, MUE = 24

Lest=1, ΘAP =ΘUE=30◦, δAP+UE=6

IEEE 802.11ad Lest=1, SLS and BRF w/ fixed 10◦ beamwidth

Fig. 5. Office-like simulation scenario with a fixed AP and a mobile UE
walking through three different routes.

implementation, we assume that, whenever the QoS falls
below a certain threshold, a training frame is allocated to
perform a sector level sweep (SLS), while a beam refinement
(BRF) procedure for fine grained calibration of the current
beams is done every two pure data frames — we verified that
this setting provides the best performance for our 802.11ad im-
plementation. We run [5, Algorithm 2], [3, Algorithm 1], and
the 802.11ad protocol for different QoS thresholds, and select,
for each UE route and for each algorithm, the threshold which
provides the best performance. All the simulations consider a
60 GHz carrier frequency with 500 MHz channel bandwidth
and a transmit power at both devices equal to 30 dBm. For our
PE-Train and P-Track strategies, we assume that 128-length
Golay sequences with 4-length Walsh codes are used in both
the training slots and the preamble. Concerning the P-Track
solution outlined in §V-B, we use 10 gradient descent steps
for the preliminary estimation and 50 steps for the final
refinement. All the results are averaged over 1000 simulations
for each combination of UE route and beam search strategy.

In Fig. 6, we plot the evolution over time of the achiev-
able normalized rate per frame when different beam search
strategies are adopted. We recall that after each beam train-
ing/tracking execution, the AP and UE multi-beam antenna
patterns are updated according to the new Lest estimated
steering directions. In the data transmission phase, AP and UE
communicate with the narrowest beam patterns they are able to
synthesize and transmitting/receiving NS = Lest parallel data

streams over Lest channel paths. The adopted beam patterns
are reflected into the MAP × NS data precoder PD and the
MUE ×NS data combiner CD at the AP and UE respectively.
The achievable normalized rate is then calculated as follows:

R =
Tslot

T

∑
i∈D

log2

∣∣∣∣INS +
Pt(UHHiPD)(UHHiPD)

H

NSσ2

∣∣∣∣ (11)

where INS is the NS×NS identity matrix, D is the set of data
slots in the frame, Hi is the channel matrix in the i-th slot,
σ2 is the average noise power, and U is left singular vector
matrix of the “economic” SVD decomposition of CD.

As evident from the plots, our simulator is able to well
describe the effect of human blockage at mm-wave frequen-
cies. The blockage, which intermittently appears and breaks
the LOS link between AP and UE, is clearly visible from
the rate suddenly dropping down to very small values. In
case even the optimum rate sharply drops to zero, there is
no possibility to establish a connection between AP and UE,
i.e., the UE is in outage. In all the analyzed UE routes, our
strategy, based on the alternation of PE-Train and P-Track
according to the selected QoS and timing thresholds, yields
performance very close to the optimum oracle algorithm (only
10% rate difference on average), and significantly outperforms
both the 802.11ad approach and beam search proposals in the
literature. Quantitatively, based on the results in Fig. 6, we
report in Table II the average training overhead τ per frame,
calculated by dividing the total number of training slots used in
each route by the number of allocated frames and multiplying
by the time slot duration Tslot. As shown, our PE-Train and
P-Track strategies provide a one to two orders of magnitude
reduction in training overhead. This translates, approximately,
to an average rate increase of 48% to 150% compared to state-
of-the-art solutions and of 40% to 50% over the 802.11ad
standard. Although these results are obtained for λ=0.3 and
ξ=30 frames, we verified via grid search that the performance
achieved by our approach does not vary significantly with
the selected QoS and timing thresholds. In fact, both the
continuous execution of P-Track and the low-overhead PE-
Train make the choice of λ and ξ not determinant on the
overall performance. We repeated the evaluation for a vast
range of simulation scenarios and UE routes (not reported here
due to space constraints), where we noted that the achieved
performance does not differ considerably from that presented
here. We also verified that our strategies perform well in
environments with less blockage. For example, in the scenario
of Fig. 5 without human blockage, we obtained a 25% to 170%
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(a) UE Route #1 (b) UE Route #2 (c) UE Route #3

Fig. 6. Normalized rate over time for the three UE routes: comparison among the optimum oracle solution, the proposed strategies with λ=0.3 and ξ=30
frames), two beam training algorithms in the literature, and the baseline IEEE 802.11ad protocol.

TABLE II
TRAINING OVERHEAD AND RATE GAIN PROVIDED BY OUR APPROACH

Algorithm
Training overhead

τ (ms)
Percentage rate gain of

PE-Train+P-Track
R#1 R#2 R#3 R#1 R#2 R#3

PE-Train+P-Track 0.06 0.04 0.06 – – –
[5, Algorithm 2] 4.62 4.35 3.07 56.1 54.8 47.7
[3, Algorithm 1] 3.58 4.67 1.66 108.2 150.1 94.1
IEEE 802.11ad 0.87 0.72 0.67 44.0 39.8 50.2

rate increase over existing approaches. It is worth emphasizing
that, differently from [5] and 802.11ad, our strategies do not
require any dedicated channel for the receiver to feed back the
training results to the transmitter. Furthermore, we adopt HBF
with only 2-bit phase shifters as opposed to the 7-bit ones
used in [5] and the idealized, unconstrained ABF transceiver
considered for the implementation of [3] and 802.11ad.

VII. CONCLUSION

In this paper, we investigated the problem of beam training
and tracking in directional mm-wave networks with mobility.
Exploiting the ability of HBF transceivers to collect channel
information from multiple spatial directions simultaneously,
we designed two strategies (one deterministic for beam train-
ing and one probabilistic for beam tracking) to rapidly estimate
the most suitable transmit/receive directions at the AP and UE
sides. Simulation results, obtained by a custom simulator based
on ray-tracing channel modeling, demonstrated that the pro-
posed solution is effective to keep the average communication
rate only 10% below the optimal bound. Compared to both the
IEEE 802.11ad standard and the state of the art, our solution
provides a 40% to 150% performance increase while at the
same time using lower complexity hardware.
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