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Figure 1. (left) The 26 materials/objects (including air and water) that we evaluate in the first study. (middle) 16 Transparent materials used in the
second study, arranged from top to bottom according to the list in Figure 6. (right) 10 different body parts that are being classified in the third study.

ABSTRACT
In RadarCat we present a small, versatile radar-based sys-
tem for material and object classification which enables new
forms of everyday proximate interaction with digital devices.
We demonstrate that we can train and classify different types
of materials and objects which we can then recognize in real
time. Based on established research designs, we report on
the results of three studies, first with 26 materials (including
complex composite objects), next with 16 transparent materi-
als (with different thickness and varying dyes) and finally 10
body parts from 6 participants. Both leave one-out and 10-
fold cross-validation demonstrate that our approach of classi-
fication of radar signals using random forest classifier is ro-
bust and accurate. We further demonstrate four working ex-
amples including a physical object dictionary, painting and
photo editing application, body shortcuts and automatic refill
based on RadarCat. We conclude with a discussion of our
results, limitations and outline future directions.
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INTRODUCTION
Today we know more about our computing devices than they
know about us, their environments, and their use. Existing
visions of computing [24] assume knowledge of the world
to realize their aims. For example, Weiser’s vision of ubiq-
uitous computing [34] relies on sensing, distributed through
the fabric of life to help enable context-aware interaction [8].
Tangible user interfaces [11], rely on physical objects which
often need to understand their collective configurations while
Instrumental Interaction [4] offers an interaction model for
post-WIMP interfaces. Richer sensing and understanding of
the real world allows new forms and styles of interaction, and
hence entirely new classes of user interface to emerge.

In this paper, we explore the potential of enabling comput-
ing devices to recognize proximate materials or objects they
are touching with RadarCat. Our novel sensing approach ex-
ploits the multi-channel radar signals, emitted from a Project
Soli [19, 30] sensor, that are highly characteristic when re-
flected from everyday objects; as different materials, thick-
ness and geometry of the object will scatter, refract and reflect
the radar signals differently. We employ machine learning
and classification techniques on these signals, demonstrate
that we can reliably extract rich information about the target
material or object, and leverage this to enable novel interac-
tion capabilities. Beyond HCI, RadarCat also opens up new
opportunities in areas such as navigation and world knowl-
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edge (e.g., low vision users), consumer interaction (e.g.,
scales), or industrial automation (e.g., recycling).

Although radar technology [29] has been used for decades in
aircraft tracking, security scanners and non-destructive test-
ing and evaluation [15], we are not aware of any previous
attempt to explore this technology for enabling novel proxi-
mate interactions in the field of human-computer interaction
and ubiquitous computing. As such, our contributions are:

1. Exploration of radar sensing to capture details of a proxi-
mate target and introduction of a technique that shows the
potential of re-using tiny radar to:

(a) Classify everyday objects and recognize their orienta-
tion, or if a liquid is added.

(b) Classify and differentiate transparent yet visually sim-
ilar materials.

(c) Classify different human body parts.

2. Series of studies showing that our sensing approach is ac-
curate, which demonstrates the potential of RadarCat in a
variety of real-world applications.

3. Identification of practical use-cases for real-world applica-
tions, and implementation of four example context-aware
applications enabled by RadarCat.

As the use of sensing for material and object classification is
not new, we first describe the related work. We draw on the
experimental design in previous work to design our experi-
ments. By replicating existing experimental approaches our
results can be compared against previous and future studies.

Radar Primer
Radar uses an emission of electromagnetic radio waves, gen-
erally with a frequency within 1GHz-300GHz [1], which is
then reflected back from an object and received by a detec-
tor. The time of flight can be used to calculate the distance
to an object, and using the Doppler shift the velocity of the
object can also be measured. The properties which effect
the received radar intensity are the absorption and scatter-
ing properties of the material at the wavelengths used, and
hence the reflection and transmission properties of the mate-
rial, the material’s thickness and shape, the refractive index
and hence the specular reflection from the material, as well
as the distance to the object from the emitter/receiver. The
received signal has contributions from the reflection from the
bottom surface, the scattering from the internal structure, and
the reflection from the rear surface of the material. There are
several physical properties of the material, such as the den-
sity, which effect these absorption and scattering coefficients,
a review of which can be found in [12]. Objects may be com-
posed of single (e.g., copper sheet) or composite materials
(e.g., a mobile phone composed of a combination of materi-
als such as glass, aluminium, plastics etc.) and have different
received radar signals due to their physical properties.

RELATED WORK
Our research, and hence user studies, draw on three differ-
ent bodies of research, including object recognition, material
classification and approaches in context aware computing.

Object Recognition
Object recognition can be achieved by sampling the object
in both destructive and non-destructive ways, or disruptive
and non-disruptive ways. Destructive methods can involve
taking a physical sample of the object and subjecting it to
chemical analysis with different types of chromatography or
spectroscopy. This relies on a single material or sampling suf-
ficient aspects of composite materials to recognize the over-
all object. Methods which involve localised destruction (e.g.,
etching) are also possible [9] to realize acoustic barcodes.

Non-disruptive and non-destructive approaches rely on sens-
ing the object from its real world use. Computer vision tech-
niques, which require the object to be visible, well lit and
within range for a suitable resolution have been explored in a
range of object tracking approaches [37] (e.g., tracking rect-
angular objects [32] such as tablets), while depth sensing
(Kinect) with infrared can overcome the issue of lighting.

Radar systems, have been used to recognize particular types
of aircraft or materials in luggage or body scanners [26].
Ground-penetrating radar (GPR) can be used to detect buried
objects [2, 14] such as utility pipes or bones. Object track-
ing systems which rely on measuring WiFi [3] or Bluetooth
signals can also be employed to recognize objects.

Disruptive yet largely non-destructive approaches employ the
addition of elements to the object which can be sensed (e.g.,
RFID [5], visual markers [25], QR codes) or by allowing the
objects to emit visual or audio signals (e.g., ultrasonic [10]).

In practice, both destructive and disruptive object recogni-
tion approaches can have a significant impact and hence real-
world disruption on the physical infrastructure, environment,
computational system or services offered [15].

Material Classification
The destructive methods of object identification can also be
employed for material classification. Further non-destructive
methods such as near-infrared (NIR) spectroscopy is often
utilized for analyzing pharmaceutical products. Likewise,
millimeter wave and terahertz technology are being used to
detect materials from a distance [13] for scientific exploration
(e.g., planet hunting) or security purposes. By re-purposing
an off-the-shelf radio chipset Zhu et al. [38] have used radar
to recognize materials from a distance based on a database of
material/radar signal loss from different distance and incident
angle [16]. InfraStructs [36] suggest future applications for
interaction, using terahertz imaging. While research into the
object detection and material recognition has been undertaken
on buried objects with GPR images [6, 23]. Regardless of the
approach, these sensing methods are complex and costly, let
alone the size and power requirements.

As with recognition, material classification can employ non-
destructive and less disruptive vision-based approaches [28],
although this can be challenging. However, in a controlled
setup with sufficient light or self-illumination and at a close
proximity, the problem is more tractable. Harrison and Hud-
son [8], employ a single photoresistor with multispectral il-
lumination to identify the surface material property. Simi-
lar image-based surface classification techniques exist, such

834



as using a laser optical mouse sensor [20] for classification.
More recent work in SpecTrans [27], is able to classify trans-
parent materials in addition to surface material of everyday
objects but does not report on different object states (e.g.,
filled/non-filled cup) or use with different body parts.

Vision based material classification suffers from being lim-
ited to the material qualities which are present on the surface
of the object. This can result in confusion where a layer of
opaque material (packaging) blocks the primary object of in-
terest for classification. RadarCat, by contrast, provides a de-
gree of surface level penetration as long as the outer layer is
not highly reflective to the radar signal. This allows us to ex-
plore materials and classify object without being limited to
just what is visible on the surface.

Context Recognition
The placement of a device on the body or within the environ-
ment can be seen as an aspect of context recognition. As such,
existing wearable approaches suggest that material recogni-
tion to enable placement detection is valuable to both location
and activity recognition [8]. Phoneprioception [35] further
strengthens this, by suggesting that simple sensors such as an
accelerometer and light sensor can be combined to achieve
high accuracy in determining a phone placement location,
both on body and within ones personal space. Using EMG
sensor, Botential [21] is able to detect different placements on
the human body. On the other hand, Lien et al. [19] and Song
et al. [31] introduce a new approach to sensing finger ges-
tures, with an end-to-end radar system (Soli) and classify the
gestures using machine learning techniques such as random
forest and deep neural network. Similarly, it is also possible
to infer the 3D finger and hand position on top of a transparent
electric field sensor [18], based on random forest regression.

Figure 2. Soli alpha hardware exploded view (not to scale, image
adapted from Soli alpha SDK). Object is placed on top of the sensor
where raw radar signals are classified using machine learning (ML).

DESIGN OF RADARCAT: RADAR CATEGORIZATION
The development of RadarCat was based on iterative tech-
nical design decisions. We leveraged improved knowledge
and analysis of radar signal signatures, machine learning and
classification results in the development of our final approach.
The signatures, unique to each object, are measured when the
object is proximate to the sensor, and allows us to classify
the object using a machine learning technique. Our goal is

to overcome the limitations of camera-based systems, with
an embedded sensor that can detect surface material at high
speed and accuracy. When the object is placed on or touched
by the sensor, the near and fixed distance together with the
fixed incident angle makes our classification task straight-
forward and allowing for accurate classification. The final
design of RadarCat incorporates the following unique capa-
bilities and aspects (a) non-destructive, non-tagging, no il-
lumination (b) use with surface materials, composite objects
and certain body parts and (c) identification of new sensing
applications and practical use cases and interaction that are
brought to bear by a portable radar technology.

RadarCat Hardware
Our system uses Soli [30] (Figure 1 & 2), a prototype radar
device by Google ATAP, designed for capturing subtle finger
motion for enabling interaction with computers. For detailed
information, we refer the reader to the Soli paper [19]. Gener-
ally speaking, Soli is a monostatic radar device and contains
multiple antennas (2 transmitters and 4 receivers), providing
simultaneous operation of up to 8-channels, using frequency-
modulated continuous wave (FMCW) operating in the 57-64
GHz range (center frequency of 60 GHz). The distance from
the sensor top to plastic enclosure top is 6mm (Figure 2). In
RadarCat, the object to be tested is placed on top of the en-
closure, or touched by it as if using a stethoscope.

Currently, the Soli developer kit is only available to selected
alpha developers. While Google’s ambition is to have Soli
embedded in mobile devices in the near future, we do not
claim that our technique works with off-the-shelf hardware
just yet, nor do we claim that the hardware is our contribu-
tion. Nonetheless, we suggest that our technique should work
with other small radar systems such as Walabot [33], that will
be available later in 2016. As noted previously, Zhu et al. [38]
also explored the reuse of a off-the-shelf radio chipset work-
ing as synthetic aperture radar (SAR) for the recognition of
four different materials from a distance.

Implementation
We implemented our system in two parts i) a graphical user
interface (GUI) in C++ using Qt and ii) a classifier back-
end in Java using Weka [7] API. Communication between the
GUI and classifier are with sockets, thus, the classifier can run
on the same machine, or can be offloaded to a more powerful
server via the network, suitable for scenarios involving wear-
able devices with limited computing resources, as we show.

Feature extraction
The received radar intensity is influenced by the reflection
and transmission properties of the material. Reflected signals
from many points both within and on the object surface are
overlapping and hence contribute to the received signal.

As the radar signals are stable and highly discriminative (as
shown in Figure 3 and Figure 4), we currently use all 8 chan-
nels as input features where each channel consists of 64 data
points, yielding 512 features. We further extract the average
(avg) and the absolute value (abs) along the signals from all
8 channels, yielding an additional 128 features. In addition,
we extract common features such as absolute and root means
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Figure 3. 8-channels raw radar signals for different materials, red dotted line is the average of 8 channels, from left to right i) aluminium ii) steel iii)
copper iv) phone (Nexus5 front) v) phone (Nexus5 back) vi) combined view using the average channel. X-axis represents samples number, where each
sample is 555 nanosecond long, as the sample rate is 1.8 mega samples per second.

Figure 4. 8-channels raw radar signals for similar materials, red dotted line is the average of 8 channels, from left to right i) empty glass ii) glass filled
with water iii) tile iv) porcelain plate v) ceramic plate vi) combined view using the average channel. As we can see, the radar signals are unique.

square (rms) for each channel (x8); global maxima, global
minima, avg, abs and rms for all channels (x1), yielding ex-
tra 21 features, resulting in a total of 661 features. Through
feature selection analysis, we found the derived features are
highly ranked. Nonetheless, the remaining features are also
important to fully capture the subtle signal behaviours and are
important for training new objects. We experimented with
different machine learning classifiers and ended up with two
candidates: SVM and random forest. We finally selected ran-
dom forest due to its established fast computation time, low
memory footprint and in initial tests it outperformed SVM
slightly. We trained our random forest classifier using the
Weka API, with the default parameters. Once the classifier
has been trained, classification can proceed in real-time.

EVALUATION
We conducted multiple studies, based on existing study de-
signs, to evaluate several facets of RadarCat to support mul-
tiple purposes: i) everyday material and object classifica-
tion [8] ii) transparent material classification [27] and iii)
body parts classification [21]. Our results, both post-hoc and
real-time analysis, show that it is accurate and robust. The
studies were conducted in a quiet lab, with objects trained and
tested in the same location. The Soli sensor was left powered-
on for 10 minutes as a warm-up phase before the study.

Study One - Office and Kitchen Objects
This study aims to evaluate the classification accuracy and
scalability of RadarCat on a broad range of everyday objects,
such as those commonly found in the office and the kitchen.
We selected 26 materials from our lab, as shown in Figure 1
and Figure 5. Following the procedure of lightweight material
detection by Harrison and Hudson [8], we sampled the 26
materials twice a day for three days.

In each session, the material is being placed ten times on the
sensor at different positions and orientation, by removing it
and replacing it by hand. The material to be sampled is se-
lected randomly from the pool of 26 materials, and no two
materials were collected consecutively, to ensure that the sen-
sor couple differently with the materials. Each time a mate-
rial was sampled, five data points were recorded over a 0.17
second period (30Hz). After five iterations, the radar clutter
map was rebuilt to reduce background noise. This produces
300 data points per material (6 sets of 50). Due to this large
dataset, we performed offline analysis using the Weka toolkit.

We trained our random forest classifier using five of the six
sessions of the collected data and then evaluate the clas-
sification accuracy using data from the remaining session.
This leave-one-out process is repeated for all combinations
of sessions (6 rotations), and the average accuracy is 96.0%
(SD=1.3%). The confusion matrix is shown in Figure 5. Con-
ventional 10-fold random holdout cross-validation using all
samples which yields an optimistic accuracy of 99.97%.

Study Two - Transparent Materials
This study aims to evaluate the classification accuracy of
RadarCat on transparent materials. We were able to source
transparent materials from online plastic distributors and a lo-
cal chemistry department, similar to that in SpecTrans [27],
except cast acrylic. Figure 1 and Figure 6 lists all the
transparent materials used in our study. All materials are
in 3mm thickness and A4 size, except Borosilicate glass
at 200x200mm, PVC at A3 size and microscope slide at
75x25mm. In addition, we add in extruded acrylic of dif-
ferent thickness (2,3,4,5,6,8,10mm) and extruded acrylic of
same thickness (3mm) but with different dyes (red, green and
blue), resulting in a total of 17 materials, including air.
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Figure 5. Confusion matrix for study one - 26 materials and objects
commonly found, including air, as shown in Figure 1 (left).

We use the same procedure as the first study to collect the
sample data (placing the objects ten times randomly, each
time capturing five samples). Since the material is uniform
when placed at different positions and orientations, we col-
lected data for only three sessions, separated by one day each.

We trained our random forest classifier using two of the three
sessions of the collected data and then evaluated the clas-
sification accuracy using data from the remaining session.
This leave-one-out process is repeated for all combinations
of sessions (3 rotations), and the average accuracy is 98.67%
(SD=0.9%). The confusion matrix is shown in Figure 6. Con-
ventional 10-fold random holdout cross-validation using all
samples yields an optimistic accuracy of 100%.

Study Three - Body Parts
This study aims to evaluate the accuracy of RadarCat on clas-
sifying different body parts when they are touched. We ini-
tially selected a list of body parts to be tested following Bo-
tential [21]. However, from a pilot test, we found that the
upper arm and back of arm performed poorly in real time
classification, even though post-hoc analysis shows a promis-
ing result [21]. Thus, we removed both from our experiment,
leaving only palm, back of hand, finger, forearm, belly and
calf. We further add in body parts covered by clothes: upper
body wear, lower body wear, outerwear and glove, resulting
in a total of 11 parts, including air, as shown in Figure 1 and
Figure 7.

Figure 6. Confusion matrix for study two - 17 transparent materials.

Figure 7. Confusion matrix for study three - 11 body parts.

We recruited 6 participants from local computer science de-
partment (2 females, mean age 20). Each study took about
30 minutes and participants were paid an Amazon voucher (5
GBP). During the data collection session, participants were
instructed to put the sensor on different body parts and ap-
ply a small amount of pressure, as if they are using a stetho-
scope. We use the same procedure as the first and second
study (placed ten times, each time capturing five samples).
This procedure allows us to capture the variability performed
by participant and we collected data for one session.

Because participants wore their own clothing, which are dif-
ferent among the participants, we employ per-user classifi-
cation, where each participant had a custom classifier trained
using his or her training data. This is ideal for personalized in-
teraction with his or her own body parts but not for a generic
classifier targeting all users. Following the training phase,
we perform real-time classification evaluation, by using the
collected data from the particular participant to initialize the
system. Participants were requested to perform one of the
gestures from the training set for three times. This was re-
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peated for all the gestures. The experimenter then recorded
the on-screen result, which was not visible to the participant.

Per-user Classifier
Real time evaluation using per-user classification shows an
average accuracy of 90.4% (SD=13.6%) while post-hoc anal-
ysis using 10-fold cross validation yields 99.67% average ac-
curacy. The confusion matrix is shown in Figure 7.

Generic Classifier
We also perform post-hoc analysis on the generic classifier
(leave-one-out, using data from 5 users, test on remaining 1
user; note that they are all wearing different clothing) and
the average accuracy is 62.15% (SD=11.69%, with clothing
data) and 70.86% (SD=8.44%, clothing data removed), re-
spectively. Although there are certain levels of cross user sim-
ilarities, it is not reliable enough for general use, suggesting
that per-user training is more appropriate for body parts clas-
sification. Nonetheless, conventional 10-fold cross validation
with all six users data yields 99.82% accuracy (with clothing
data) and 99.81% (clothing data removed).

DISCUSSION
While the levels of accuracy are very high overall, and the
levels of confusion are very low as show in Figure 5, we can
see where single material types and composites can be con-
fused, for example, a macbook cover (aluminium) vs. weigh-
ing scale (contains aluminium). Likewise, wood can be oc-
casionally be confused with a book. However, items (e) and
(f), a filled and unfilled glass of water provide no confusion to
each other, demonstrating the extent of the signal penetration
and reflection required for RadarCat to disambiguate different
materials and objects.

The results of this study further show that it is possible to
recognize the front and the back of a mobile device, or recog-
nize different models (e.g., Nexus5 and Nexus10). While the
surface material of different models is the same (glass), the
internal composition (different arrangement of the chipset)
makes them differentiable by radar sensing. Some objects are
composite (e.g., phone, tablet, eraser) which contains differ-
ent materials in a thin form factor, while some materials are
single and solid (e.g., glass, aluminium, plastic), while others
have varying density throughout (e.g., wood). The states of
electronic devices (switched on/off) did not affect the result.

Based on our testing, we can suggest that: i) For flat and solid
materials (flush), very little training is needed to achieve the
accuracy reported here, with the varieties of objects indicated.
ii) For flat but low-density materials (sparse, hollow), more
training from different positions and orientations of a single
axis is needed but it is still possible to achieve high accuracy.
iii) For non-flat materials, due to their geometry, more train-
ing from different positions and orientations from all three
axes is required, which can limit the suitability of this training
approach, but is an interesting direction for future research.

Experimentation with a smaller set of features, and a larger
range of objects, in a wider set of scenarios is also required.
Deep-learning methods are applicable to improve the scala-
bility and generalization to everyday objects (e.g., Apples of

different sizes). In addition, the extent of material character-
istics (e.g., types of liquid) is an area of rich future work.

Little can be added to the results presented in Figure 6 due
to the high levels of accuracy reported. Given the frequency
range of the radar we suggest it is the absorption/scattering
properties and concentration of the dye we are classifying
along with the different thicknesses of materials. This means,
we can not only differentiate visually similar materials like
different types of transparent plastics but also color. The ex-
tent of this, given different dye properties, thicknesses, mate-
rial surface characteristics requires further exploration.

Finally, the results of the body parts study demonstrate that
the forearm (e), belly (f) and calf(g) confused each other with,
e - f (0.11), e to g(0.28), g to e (0.22), f - g (0.11), while the
rest of body parts performed well. While this requires further
study, we believe that this is due to these three body parts
having somewhat similar structures (flat with mostly tissue
and muscle) and hence appear similar to RadarCat, given that
millimeter waves only penetrate shallowly into human tissue,
typically less than 1mm [22].

In contrast, the palm, finger and back of hand each have
very different structure near the 1mm range that the radar can
“see”, due to the shape, nature of skin, bone and blood ves-
sels near the surface, thus RadarCat differentiates this easily
and has a higher accuracy. We also observe certain level of
variability across users. For example, P1 has perfect accuracy
on all trials on all body parts, while P4 has good accuracy on
forearm and belly but 0 correct on calf and P5 has perfect ac-
curacy on calf but 0 correct on forearm and belly (both are
recognized as calf). Finally, body parts covered by clothes
are often very accurate (Figure 7).

EXAMPLE USE SCENARIOS
There are many immediate applications that RadarCat can
support (e.g., automatic waste sorting). Here we designed and
implemented four example applications that demonstrate dif-
ferent interaction possibilities if the proximate target material
or object is known (see Figure 8 and video figure). Following
this, we speculate about potential applications and use cases.

Current Applications
Physical object dictionary - when an object is placed on
the sensor (Figure 8a), the system can recognize the object
and automatically search for relevant information or language
translation, and then feedback this to the user. This can be
useful because searching online often requires the user to
know the name of an object in the first place. However, there
are times when users are not aware of the name of an item -
e.g., a specific phone model, which will make searching for it
difficult. It also aids in learning environments because we can
relate physical objects in-situ to improve learning efficiency.

Painting and photo editing application - users can use the
RadarCat system as a physical probe instrument (as shown
in Figure 8b), to quickly and intuitively change the operat-
ing mode (scale, rotate, pan) or the brush (size, color, style)
depending on what the probe is sensing. For example, touch-
ing plastics of different materials switches the operating mode
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Figure 8. Four example applications to demonstrate the interaction possibilities of RadarCat, from left to right a) physical object dictionary b) tangible
painting app c) context-aware interaction and body shortcuts d) automatic refill.

while touching plastic of different color or thickness changes
the brush’s paint color and size.

Context-aware interaction and body shortcuts - with Radar-
Cat attached to the back of a phone (as shown in Figure 8c),
the system can tell whether the phone is held by bare palm
or palm wearing a glove. This allows the phone to switch in-
telligently to easy mode - where the buttons are considerably
larger to accommodate the fat finger problem when wearing
a glove. In addition, touching different body parts activates
different shortcut commands instantly. For example, touch-
ing the back of the hand, tummy (belly/trunk) and leg can be
programmed to launch clock, food or map applications, re-
spectively. It is also possible to know whether the phone is
placed on the table, the sofa or inside the pocket (placement
aware), facing up or facing down (situation aware), and al-
low the phone to switch into different modes automatically to
adapt the environment, such as silent mode or loud speaker
mode or turning the screen off to save battery.

Automatic refill - in a bar or restaurant scenario, where
RadarCat sensors are embedded ubiquitously beneath the sur-
face of a table, the system can tell whether a cup is full or
empty, and if it is the latter, the system can alert the waiter for
refill, all without intervention of the user (Figure 8d).

Future Applications
Recycle center - human intervention is often still needed to
separate different types of waste, such as metal, glass and
wood. With RadarCat, sorting waste can be automated.

Assisting the visually impaired - while one’s sense or touch
and smell can mitigate many of the challenges faced with-
out sight, RadarCat once embedded in gloves or shoes can
enhance ones understanding of the environment around you.
Tactile paving on the sidewalk or limited braile interfaces
might be replaced in the future.

Smart medical devices - current digital medical devices used
outside the body, such as thermometers or stethoscopes still
require the operator to manually note the different body parts
being measured. Future devices with RadarCat embedded,
can allow the automatic tagging of recorded temperature or
sounds with the body part as it is detected.

LIMITATIONS
While RadarCat is a multi-purpose sensing system and
achieves high accuracy in the three studies we conducted, it
will not be suitable in all situations. For example, although
our studies show that it can differentiate acrylic with different
dyes with varying absorption/scattering properties (and hence

colors), this is mainly due to the high concentration of the dye
component. In contrast, we were not able to differentiate sin-
gle “stick-it note” of different colors. Therefore, in certain
tasks, especially those involving identifying thin surface ma-
terial based on color and texture we suggest imaging-based
methods as described in our related work.

The radar hardware we used (Soli) is very sensitive, which in-
troduces new problems. The high degree of sensitivity allows
us to differentiate visually similar materials at high accuracy
but this can be affected by background noise. In fact, the radar
will gain clutter (reflections of unwanted objects) over time,
especially before the hardware has reached a steady state tem-
perature, or due to the movement or environmental changes.
Radar clutter can impact the recognition rate, because the
training data were collected with clutter removed. In practice,
the clutter map can be easily rebuilt or by employing adaptive
clutter removal [17]. Next version of Soli device removes this
heat issue, and hence addressing the signal drift issue.

CONCLUSION AND FUTURE WORK
In this paper, we have presented RadarCat, a new sensing
technique to provide versatile, multi-purpose material and ob-
ject classification which enables novel forms of interaction.
Our studies show that it is accurate and robust and we believe
we have demonstrated its potential and implications in every-
day interaction. Our technique can be used independently or
combined with other sensing approaches. This can improve
the sensing and computational edifice around which we real-
ize new mobile, wearable and context-aware user interfaces.

Future work should explore a smaller set of channels, fea-
tures and fewer sample points to explore the limits of object
discrimination. For objects made of similar materials with
strong radar reflections, investigation of its signature along
different dimensions should be undertaken. In addition, the
materials scattering and absorption properties at these wave-
lengths should be investigated further. We further wish to em-
pirically validate the observed ability to recognize different
fruits or credit cards, or counting the number of poker cards,
or differentiating liquid content in a container. Finally, we
would like to explore ways to encode information into an ob-
ject, or stacking multiple layers of different materials which
can be sensed, similar to [36] but in real time for interaction.
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