
Grid Programming:
Concepts and Challenges

Michael Rokitka
SUNY@Buffalo

CSE510B
10/2007

Issues Due to Heterogeneous
Environment

• Hardware level
– Different architectures, chipsets, execution

speeds

• Software level
– Different operating systems (and versions),

different compilers, heterogeneous software
environments (libraries, etc.)

• Administrative level
– Differing and incompatible administrative

policies between various grid resources

Key Issues for Grid Applications

• Resource reservation

• Security

• Accounting (Logging & Audit Trail)

• Communication (IPC)

• Rapidly changing runtime environment

• Grid is still in many ways in its infancy
– There are many APIs of varying size and complexity

– APIs are subject to (possibly rapid) change, just as the Grid is

– Programmers often add a further layer of abstraction on top of
these APIs to simplify dealing with them

From an Application Programmer’s
Perspective

• Who is the typical application
programmer?
– Domain scientist trying to solve domain

specific problems

– NOT a Grid expert, or software expert

– Would prefer to just work on solving their
problem, not having to spend time worrying
about low-level details.

• Great need for standardized and widely
adopted programming interfaces

Grid Service & Middleware APIs

• SOAP based services
– SDL: Service Description Language

• Protocol based services
– Accessed via client side C API, well defined

protocol

• Web Service based services
– WSDL & WSRF

• Still others
– Complex APIs, easier to use tools provided

The Need for Uniformity

• Currently there are too many APIs, many
of which are complex, for dealing with
common services

• The learning curve for the various
frameworks and APIs needed is high

• Applications need to be updated
continuously to keep up with API &
framework changes

• A uniform approach to Grid APIs, or even
a single Grid API is needed to deal with
these issues

GAT – The Grid Application
Toolkit

• What is GAT?
– GAT is a set of coordinated, generic and flexible APIs for

accessing Grid services from e.g. generic application codes,
portals, data managements systems, together with working
implementations provided by the tools developed in the Grid Lab
project

– GAT is designed in a modular plug-and-play manner, such that
tools developed anywhere can be plugged into GAT

– GAT itself is a library which presents to the application
programmer a uniform interface to Grid technologies. The actual
Grid technologies which implement the GAT API functionalities
are plugged into GAT by means of a plugin architecture

• Allows the application programmer to worry about the application and the
Grid experts to worry about the plugins which talk to their services

GAT API & the GridLab
Architecture

How Does GAT Work?
• The client application makes GAT API calls for

operations which may be Grid-related

• The client application links against the GAT
Engine

• The client application runs irrespective of actual
underlying infrastructure deployment

• The GAT engine loads adaptors which are valid
in the environment extant when the application
starts

• The GAT adaptors try to do Grid operations on
request, on failure another adaptor provided
function may be called

SAGA - Simple API for Grid
Apps

• What is SAGA?
– An object-oriented API with a number of

functional packages for fundamental
programming capabilities

– Provides a high-level interface to different
middleware

– Language-independent, with multiple
language possibility of multiple language
bindings

• Interface is specified in SIDL (Scientific Interface
Description Language)

SAGA Functional Packages
• Job Management

– Provides job submission to grid resources and subsequent management, either
in batch or interactive mode, using a state model consistent with that of OGSA-
BES.

• Name Spaces
– Provides methods for managing hierarchical name spaces

• File Management
– In conjunction with the Name Space Package, provides methods for operating on

the content of files, e.g., read, write, seek

• Replica Management
– Provides logical files and replicas, along with search based on logical file

metadata

• Streams
– Provides a persistent byte stream abstraction for communication objects

• Remote Procedure Call
– Provides a remote procedure call style of interaction consistent with the OGF

GridRPC standard

SAGA “Look & Feel” Packages
• Task Model

– Provides management of any asynchronous tasks (local or remote)

• Monitoring Model
– Provides a callback mechanism whereby an application can be notified of object

state changes

• Sessions
– Allows sets of SAGA objects to be isolated and managed independently

• Contexts
– Provides a security information container attached to a session

• Base Object
– Provides essential methods for all SAGA objects, e.g., unique ID

• Attribute Interface
– Provides a common interface for getting/setting object attributes

• Error Handling
– Provides uniform error handling for all SAGA objects

Grid Services: Information Services

• Information Services
– Discovery and monitoring of Grid resources &

services

• Globus MDS
– MDS collects information across multiple, distributed resources on a grid via

aggregator services that collect real-time (or fairly recent) state information
from registered information sources into an index

– Collections of information can be queried through various interfaces (browser,
command line, and Web Services)

• GridLab’s iGrid
– Distributed architecture is based on two kind of Information Services, iServe and

iStore (GSI-enabled web services)

– iServe services supplies information about a specific resource

– iStore services aggregate information coming from registered iServe

Grid Services: Job Submission &
Management

• Job Manager
– Enables the site or grid administrator to define and enforce procedures and

policies for running jobs on a resource based on a wide range of properties such
as computing system or type, user groups, priorities, run time, queue types and
lengths, etc.

– Provides end user with methods for submitting, monitoring, and controlling jobs

– Eg. PBS, LSF, Globus GRAM, Torque

• Job Scheduler
– Matches the job with the appropriate resources according to the requirements

specified by the user (amount of memory, CPUs, disk space, running time, etc.)

– Eg. Maui, PBS, LSF, Globus GRAM, Load Leveler

* Condor/Condor-G also provide this functionality

Grid Services: Advance
Reservation

• AIST Grid Scheduling System (GRS)
– Used for co-allocation of computing & network resources

• Computing resource manager

• Network resource manager

• Grid resource scheduler that handles requests from users via the
other two

• NAREGI GridVM
– Provides a virtual execution environment and advanced registration of

compute nodes

• Virtual Workspace (Keahey)
– Execution environment in terms of the hardware and software

components required

• Globus GRAM
– Allows users to create and manage advance registration by leveraging

the control provided by local resource manager

Data Access, Movement, and
Storage

• Globus Services
– GridFTP

• Standard protocol based, requires open socket, non-
recoverable

– RFT
• Web Service based, recoverable

• Condor Network Storage Technology
(NEST)
– Negotiates guaranteed storage allocations (contracts), in terms

of "lots", between users and servers for specified periods of time
• User/group access control

• Storage automatically reclaimed at end of contract

• Local limits and policies can be enforced by admin

Accounting Packages

• Gratia
– Large-scale operation on the Open Science Grid to

collect accounting information
• Data is collected via a standard process, running on each node,

which generates daily usage logs containing information on the jobs
that ran and how many resources they consumed

• Probe is used to read generated files and convert them to usage
records that the can then be sent to the collector

• Data is consumed by a collector and stored in a reporting database

• SweGrid Accounting System (SGAS)
– Java implementation of a resource allocation enforcement and tracking

service based on the Web Service technologies

– Includes logging and tracking in GGF Usage Record XML format and a
remote and scriptable management interface

Gratia Architecture

Workflow Processing
• Workflow is the operational aspect of a work procedure: how tasks

are structured, who performs them, what their relative order is, how
they are synchronized, how information flows to support the tasks
and how tasks are being tracked

• Workflow problems can be modeled and analyzed using graph-
based formalisms like Petri nets

• Condor Directed Acyclic Graph Manager (DAGman)
– Allows you to specify the dependencies between Condor jobs

– In case of failure at any step, DAGman will continue as far as
possible and then create a "Rescue File" which holds the current
state of the DAG job, which can later be used to restore the job
to its previous state

Security

• GridShib
– An NSF funded project of NCSA and the University of Chicago,

to integrate the federated authorization infrastructure of
Shibboleth with the Globus Toolkit

– Identity-based authorization is provided via ACLs ("gridmaps")
mapping to local identities
(Unix logins) and a Community Authorization Service (CAS)

– Shibboleth project offers a large base of campus use around the
world via a standards-based and open source implementation
and a standard vocabulary for describing user attributes.

GridShib Goals
• Integrate X.509 and SAML to provide enhanced

Grid Security Infrastructure (GSI)

• Enable attribute sharing between virtual
organizations and higher-educational institutions

• Develop and implement profiles to securely
share attributes across administrative domains

• Investigate attribute-based access policy
enforcement for grids

• Generalize attribute-based authorization policies
in the Globus Toolkit runtime environment

GridShib Relationship

References
• OGF SAGA one Pager

– http://www.gridforum.org/UnderstandingGrids/documents/SAGA-
OnePager%20jfe.pdf

• An introduction to SAGA
– http://www.iceage-eu.org/issgc07/lectureMaterial/S25_saga_issgw07.pdf

• GridLab Grid Application Toolkit
– http://www.gridlab.org/WorkPackages/wp-1/

• Grid Cookbook
– http://www.sura.org/cookbook/gtcb/index.php?topic=7&mlevel=1&parent=0

• Shibboleth
– http://shibboleth.internet2.edu/

