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. We know that the lower bound of the sorting problem = Q(nlgn) and for an n input sorting network,
we can have at most n/2 comparisons, therefore the depth of the sorting network will be at least lgn.

. Similar as problem 1, we need at least Q(nlgn) comparison to sort arbitrary input, therefore we need
at least Q(nlgn) comparators in the sorting network.

. Suppose a number inputs at position ¢ and outputs at position p;. Because the transposition network
can only exchange data with adjacent lines, therefore the shortest distance from ¢ to j is abs(i — p;)-
For all the inputs, the total distance will be

iabs(i -pi) < i (n ; D _ Q(n?)

=1

. n =1, single element and is monotonic

n = 2, can be either increasing or decreasing and both of them are monotonic

n = 3, can be either increasing or decreasing or increasing then decreasing or decreasing then increasing.
The first two are monotonic and the last two are bitonic. n = 4, for example, the series [0 2 1 3] is not
bitonic, therefore the answer of the question is 4.

(a) Let’s first take a look at one comparator, one of the output of the comparator is the larger
number among the two inputs and the other one is the smaller number. If F is a monotonic
increase function, we want to prove the following figure is true.

x1 -XXX- max(x1, x2) F(x1) -XXX- F(max(x1l, x2))
XXX -—> XXX
x2 -XXX- min(x1, x2) F(x2) -XXX- F(min(x1, x2))

If we have x1 > x3, the output of the comparator after applying F' will be max(F(x1), F(z2))
and min(F(z1), F(z2)). And because F is a monotonic function, F(z;) > F(z2). Therefore
max(F(x1), F(z2)) = F(z1) and min(F(x1), F(x2)) = F(x2). Because x1 > 3, F(max(x1,z3)) =
F(z1), F(min(z1,22)) = F(x2). The case is proved. Similarly you can prove z1 < zs.

Now we can prove the network by induction on the depth d of the wires of the network.

If d = 0, the input is identical to the output, therefore the case is trivial.

If d = n is true, by the inductive hypothesis, therefore, the input wires to the comparator carry
values z; and x; when the input sequence X is applied, then they carry F(z;) and F(z;) when
the input sequence F'(X) is applied. By our earlier claim the output wires of this comparator
then carry F'(min z;,z;)) and F(max(z;,x;)). Since they carry min(x;,z;) and max(z;, z;) when
the input sequence is X, the question is proved.

(b) Suppose contradiction, then we have a network which can sort 0-1s but cannot sort arbitrary
network, then we can assume that the sequence which cannot be sorted is (z1, 2, ...zj, ...Z5, ...Qp ),
z; < z; and after feeding the input to the network, the network put z; before ;. Then we can
define a monotonic increase function F as F(z) = 0 if x < z; and = 1 if z > a;. But by 5(a), the
network will put F(a;) = 1 ahead of F(a;) = 0, which does not sort the 0-1 input, therefore we
prove the problem.



6. By 0-1 principle, if the sorting network can sort 0-1 input, then it can sort any arbitrary input.

If we use #0; as a notation of number of Os in the list i. then we have

#0, =121 4 (1
#0z #0

#0, = [ 5= + 57

Then the 0 difference between U and V can be either 0, 1 or 2

(a) 0 : which means the two series is looked like

i
X = 000...000111...111
Y = 000...000111...111

X,; compares with Y;_;, which are all 0s. X;; = 0 compare with ¥; = 1 and 0 is ahead of 1 by
the sorting rules. Therefore the list is sorted.

(b) 1: which means the two series is looked like
i
X = 000...000111...111
Y = 000...001111...111

X,; compares with Y;_;, which are all 0s. X;;1 compares with Y;, which are all 1s. Therefore the
list is sorted.

(¢) 2 : which means the two series is looked like
i
X = 000...000111...111
Y = 000...011111...111

X; 1 compares with Y; 5, which are all 0s. X; = 0 compares with Y; ; = 1, which put 0 ahead
of 1 by the sorting rule and X, compares with Y;, which are all 1s. Therefore the list is sorted.



