Plagiarism will earn you an F in the course and a recommendation of expulsion from the university.

1. $\mathrm{T} \wedge \mathrm{F}=$
a. T
b. F
2. $\mathrm{T} \vee \mathrm{F}=$
c. F
d. T
3. Which of the following are predicates? Choose all that are correct.
a. x is odd.
b. 22 is a prime number.
c. $\frac{1}{1+x}<1$.
d. $\quad 16=x^{2}$.
e. There are 15 questions on this exam.
4. $\neg p \vee \neg q \equiv \neg(p \wedge q)$
a. True
b. False
5. $p \wedge q \equiv \neg(p \wedge \neg q)$
c. True
d. False
6. $A=\{1,5,2,3\}, B=\{1,2,5,3\}$
a. $A=B$
b. $A \neq B$
7. $A=\{1,2,3,4\}, B=\{1,2,3,4,5\}$. Choose all that are correct.
a. $A \subset B$
b. $B \subset A$
c. $A \subseteq B$
d. $B \subseteq A$
e. $A \nsubseteq B$
8. $A=\{1,2,3,4,5,6\}, B=\{1,2,3,4,5\}$. Choose all that are correct.
a. $A \subset B$
b. $B \subset A$
c. $A \subseteq B$
d. $B \subseteq A$
e. $A \nsubseteq B$
9. $A=\{1,2,3,4\}, B=\{1,2,3,4,5\}$. Choose all that are correct.
a. $A \cap B=\{2\}$
b. $A \cap B=\{2,3\}$
c. $A \cap B=\{1,2,3,4,5\}$
d. $A \cap B=\{5\}$
e. $A \cap B=\{1,2,3,4\}$
10. $A=\{1,2,3,4\}, B=\{1,2,3,4,5\}$. Choose all that are correct.
a. $A \cup B=\{2\}$
b. $A \cup B=\{2,3\}$
c. $A \cup B=\{1,2,3,4,5\}$
d. $A \cup B=\{5\}$
e. $A \cup B=\{1,2,3,4\}$
11. Let $c(x)=x^{3}$, where x is a real value. Choose all that are correct.
a. c is neither one-to-one nor onto.
b. c is one-to-one but not onto.
c. c is onto but not one-to-one.
d. c is both one-to-one and onto.
12. Choose all that are correct.
a. $\lfloor 10.9\rfloor=10$
b. $\lceil 10.9\rceil=10$
c. $\quad[10.1\rfloor=10$
d. $\lceil 9.9\rceil=10$
e. $\quad\lceil 9.1]=10$
13. $(A \cup B) \cup C=A \cup(B \cup C)$ is an example of which law.
a. De Morgan's Law
b. Law of Diminishing Returns
c. Associative Law
d. Commutative Law
e. Murphy's Law
14. $\sum_{i=1}^{n} i=$
a. n^{2}
b. $\frac{n(n+1)}{2}$
c. $\frac{(n-1)(n+1)}{2}$
d. n^{3}
e. $\Theta(n)$
15. Let $X=\{u, v, w, y\}$. Define a function $g: X \rightarrow X$ to be $g=\{(u, v),(v, w),(w, y),(y, u)\}$. What is $g^{-1}(x)$? Choose all that apply.
a. $\{(u, w)\}$
b. $\{(y, u),(w, y),(v, w),(u, v)\}$
c. $\{(w, u)\}$
d. $\{(v, u),(w, v),(y, u),(w, y)\}$
e. None of the above
16. $\sum_{j=0}^{n} 2^{j}=$
a. $2^{j}+\sum_{j=0}^{n-1} 2^{j}$
b. $2^{n-1}+\sum_{j=0}^{n-1} 2^{j}$
c. $2^{n}+\sum_{j=0}^{n-1} 2^{j}$
d. $2^{n}+\sum_{j=0}^{n} 2^{j}$
e. $\sum_{j=0}^{n / 4} 4^{j}$
17. Given an ordered array of n items on a sequential computer (i.e., a RAM), what is the worst-case (i.e., longest) running time of Binary Search?
a. $\Theta(n \log n)$
b. $\Theta(n)$
c. $\Theta(\log n)$
d. $\Theta\left(n^{2}\right)$
18. Given a list of n items, arbitrarily ordered on a sequential computer. Choose all that correctly describe the running time of (an efficient implementation of) MergeSort.
a. $\Theta(n \log n)$
b. $\Omega(n)$
c. $\Theta(\log n)$
d. $O\left(n^{2}\right)$
e. MergeSort has the same behavior, in terms of running time, as QuickSort.
19. Given a PRAM with n processors and n data initially distributed arbitrarily in the first n locations of the shared memory, the minimum value of these n items can be determined by using which technique.
a. Massively Exploding
b. Massively Imploding
c. Recursive Doubling
d. Recursive Halving
20. Suppose you are given a linear array of size n with n pieces of data initially distributed one per processor in an arbitrary fashion. Choose all that apply.
a. The minimum value requires $\Omega(n)$ time to be determined.
b. The minimum value can be determined in $\Theta(\log n)$ time.
c. The minimum value can be determine in $\Theta(n)$ time, which is asymptotically optimal for this architecture.
d. The minimum value is 1.
e. None of the above.

Extra Credit

21. Dr. Miller is a member of which Pop/Rock Band?
a. The False Implications
b. Florence and the Fender Precisions
c. Theorem and Lemmas
d. Escher's Enigma
e. Prof. Miller is not in a Pop/Rock Band.
22. What is the name of the software created by Dr. Miller's research group in molecular structure determination?
f. Prestige-Worldwide
g. Snoop-a-Loop
h. Shake-and-Bake
i. All-Along-The-Watchtower
j. None of the above. These are all phrases used by Will Farrell and have nothing to do with Dr. Miller's research.
