
Fundamental mathematical 
techniques reviewed: 
 
• Mathematical induction 
• Recursion 
 
Typically taught in courses 
such as Calculus and 
Discrete Mathematics. 
 
Techniques introduced: 
• Divide-and-Conquer 

 
Algorithms Covered: 
• Binary Search 
• Merge Sort 
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Solutions From Simpler Cases 

• Mathematical induction is a technique for proving statements about 
sets of consecutive integers. One can view this as being done by 
inducing our knowledge of the next case from that of its predecessor. 

• Recursion is a technique where a solution to a problem consists of 
utilizing solutions to smaller versions of the problem.  

• Divide-and-Conquer is a recursive technique: 

i. Divide a large problem into smaller subproblems. 

ii. Solve the subproblems recursively, unless the problems are 
small enough to be solved directly.  

iii. Combine the solutions to the subproblems in order to obtain a 
solution to the original problem. 
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Mathematical Induction 

• Given a statement about positive integers, show that the 
statement is always true. 

• Let 𝑃(𝑛) be a predicate, a statement that is true or false, 
depending on its argument 𝑛. Assume 𝑛 is a positive integer. 

• Example of Predicate: “The product of the positive integers 
from 1 to 𝑛 is divisible by 10.”  
• This predicate is true for 𝑛 = 5 since 1 × 2 × 3 × 4 × 5 = 120, which 

is divisible by 10.  

• This predicate is false for 𝑛 = 4 since 1 × 2 × 3 × 4 = 24, which is not 
divisible by 10. 
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Principle of Mathematical Induction 

Given a predicate that it is true for all positive integers 𝑛, 
the predicate can typically be proved as follows. 

• Let 𝑃(𝑛) be a predicate, where n is an arbitrary positive 
integer. Suppose the following can be accomplished. 

1. Show that 𝑃(1) is true. 

2. Show that whenever 𝑃(𝑘) is true, we can derive that 
𝑃(𝑘 + 1) is also true. 

• If these two goals can be achieved, then it follows that 𝑃(𝑛) is 
true for all positive integers n. 
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Why Does Mathematical Induction Work? 

• Suppose the two steps on the previous slide have been proven. 

• Then from step 1, 𝑃(1) is true, and thus by step 2, 
𝑃 1 + 1 = 𝑃(2) is true, and thus by step 2,           
𝑃 2 + 1 = 𝑃(3) is true, and thus by step 2,           
𝑃 3 + 1 = 𝑃(4) is true, and so forth. 

• That is, step 2 allows for the induction of the truth of 𝑃(𝑛) for 
every positive integer 𝑛 from the truth of 𝑃(1).  

• Base Case: The statement 𝑃 1 = 𝑡𝑟𝑢𝑒 is referred to as the base 
case of the problem being considered.  

• Inductive Hypothesis: The assumption in Step 2 that 𝑃 𝑘 = 𝑡𝑟𝑢𝑒 
is called the Inductive Hypothesis.  This is due to the fact that Step 2 
is typically used to induce the conclusion that the statement 
𝑃 𝑘 + 1 = 𝑡𝑟𝑢𝑒. 
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Example: Prove That For All Positive Integers n, 

 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
. 
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• First, it might be guessed that  𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
, as follows. 

• Let 𝑆 =  𝑖𝑛
𝑖=1 .  

• Then 𝑆 = 1 + 2 + ⋯+ 𝑛 − 1 + 𝑛. 
• Write 𝑆 in reverse order:  S = 𝑛 + (𝑛 − 1) + ⋯+ 2 + 1. 
• So, if these two equations are added by combining the first terms of 

the right sides, the second terms of the right sides, and so on, the 
result is  

2𝑆 = 𝑛 + 1 + 𝑛 + 1 + ⋯+ 𝑛 + 1 = 𝑛(𝑛 + 1), 

or 𝑆 =
𝑛(𝑛+1)

2
.  

• Again, note that this exposition is not a proof, due to the 
imprecision of the “…” notation. 
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(continued) 

Now, a formal proof is given of  𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
. 

• The equation claims that the sum of the first 𝑛 positive 

integers is 
𝑛(𝑛+1)

2
. 

• Base case: For 𝑛 = 1, the left side of the asserted equation is 
 𝑖1

𝑖=1 = 1 and the right side of the asserted equation is 
1(1+1)

2
= 1. 

• Thus, for 𝑛 = 1, the asserted equation is true. Therefore, the 
base case of the induction proof is achieved. 
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(continued) 

• Inductive case: Suppose the asserted equation is valid for 𝑛 = 𝑘, for 
some positive integer 𝑘. Notice that it is justifiable to state this 
assumption due to the demonstration above that the case 
𝑛 = 𝑘 = 1 is an instance for which the assumption is valid. 

• Now, the asserted equation must be proven true for the next case, 
namely, 𝑛 = 𝑘 + 1. That is, by using the assumption for 𝑛 = 𝑘, it 
must be proven that  

 𝑖𝑘+1
𝑖=1 =

(𝑘+1)(𝑘+2)

2
. 

• Notice that the left side of the latter equation can be rewritten as 

  𝑖𝑘+1
𝑖=1 =  𝑖𝑘

𝑖=1 + (𝑘 + 1). 
• Substituting from the inductive hypothesis gives 

 𝑖𝑘+1
𝑖=1 =

𝑘(𝑘+1)

2
+ (𝑘 + 1) =

(𝑘+1)(𝑘+2)

2
, 

as desired. Thus, the proof is complete. 
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Recursion 

• A subprogram that calls upon itself, either directly or indirectly, is 
called recursive. Formally, an algorithm exhibits recursive behavior 
when it can be defined by two properties. 

• A simple base case or cases. 

• A set of rules that reduce all other cases towards the base case. 

• Recursive calls are made with a smaller/simpler set of data. 

• When a call is made with a sufficiently small/simple enough set of 
data, the call is resolved directly.  

• Notice the similarity of mathematical induction and recursion.  

• Just as mathematical induction is a technique for inducing 
conclusions for “large n” from our knowledge of “small n,” 
recursion allows for the processing of large or complex data sets 
based on the ability to process smaller or less complex data 
sets. 
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Recursively Defined Factorial Function 

Definition of n!: Let 𝑛 be a nonnegative integer. Then 𝑛! is 
defined as 

 𝑛! =  
1 if 𝑛 = 0;

𝑛 × 𝑛 − 1 ! otherwise.
 

 

• Theorem: For 𝑛 > 0, 𝑛! is the product of the integers from 1 
to 𝑛. 

• So, 𝑛! can be computed using a tight loop. 

• Note that the definition of 𝑛! is recursive and lends itself to a 
recursive calculation. 
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Example: Compute 3! 

The definition of 𝑛! is used to compute 3! as follows.  

• From the recursive definition, 3! = 3 × 2!.  

• Thus, the value of 2! needs to be determined. 

• Using the second line of the recursive definition, 3! = 3 ×
2! = 3 × 2 × 1! = 3 × 2 × 1 × 0!.  

• Notice that the first line of the Definition of n Factorial yields 
0! = 1.  

• This is the simplest case of 𝑛 considered by the definition of 
𝑛!, a case that does not require further use of recursion and 
therefore is a base case. 
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Example: Compute 3!  (continued) 

A recursive definition or algorithm may have more than one base 
case. It is the existence of one or more base cases, and logic that 
drives the computation toward base cases, that prevent 
recursion from producing an infinite loop. 

 

In the example, substitute 1 for 0! in order to resolve our 
calculations. If one were to proceed in the typical fashion of a 
person calculating with pencil and paper, this would yield 

3! = 3 × 2 × 1 × 0! = 3 × 2 × 1 × 1 = 6. 
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Pseudocode for 𝑛! 

Integer function factorial (integer 𝑛) 

Input: 𝑛 is assumed to be a nonnegative integer.  

Algorithm: Produce the value of n! by using recursion. 

Action:  

 If 𝑛 = 0, then return 1 

 Else return  𝑛 × 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑛 − 1  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

How does one analyze the running time of this function? 
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Analysis of Factorial Function 

• Let 𝑇(𝑛) denote the running time of the procedure with input 
value 𝑛. 

• From the base case of the recursion, 𝑇 0 = Θ(1), since the 
time to compute 0! is constant. 

• From the recurrence given above, the time to compute 𝑛!, for 
𝑛 > 0, can be defined as 𝑇 𝑛 = 𝑇 𝑛 − 1 + Θ(1). 

• The conditions 

𝑇 0 = Θ(1);

𝑇 𝑛 = 𝑇 𝑛 − 1 + Θ 1
  (1) 

form a recursive relation. 

• Now, evaluate 𝑇(𝑛) in such a way as to express 𝑇(𝑛) without 
recursion. 
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Analysis of Factorial Function (continued) 

• Repeated substitution of the recursive relation results in 
𝑇 𝑛 = 𝑇 𝑛 − 1 + Θ 1 = 

𝑇 𝑛 − 2 + Θ 1 + Θ 1 = 𝑇 𝑛 − 2 + 2Θ 1 = 

𝑇 𝑛 − 3 + Θ 1 + 2Θ 1 = 𝑇 𝑛 − 3 + 3Θ 1 . 

• The emerging pattern is 

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘Θ 1 . 

• Such a pattern will lead us to conjecture that 

𝑇 𝑛 = 𝑇 0 + 𝑛Θ 1 , 

which, by the base case of the recursive definition, yields 

𝑇 𝑛 = Θ 1 + 𝑛Θ 1 = Θ 𝑛 . 

• Note the above is not a proof. 

Russ Miller & Laurence Boxer Algorithms Sequential & Parallel: A Unified Approach, 3E Chapter 2 / Slide 19 



Analysis of factorial function (continued) 

Observe that the Θ-notation in condition (1) is a generalization of 
proportionality. Suppose the simplified recursive relation is considered 

𝑇 0 = 1;
𝑇 𝑛 = 𝑇 𝑛 − 1 + 1.

      (2) 

Previous observations leads one to suspect that this yields 𝑇 𝑛 = 𝑛 + 1. A 
proof by mathematical induction follows. 

• For 𝑛 = 0, the assertion is 𝑇 0 = 1, which is true. 
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Analysis of factorial function (continued) 

• Suppose the assertion  is true for some nonnegative integer k. Thus, the 
inductive hypothesis is the equation 𝑇 𝑘 = 𝑘 + 1.  

• Now, one needs to show 𝑇 𝑘 + 1 = 𝑘 + 2. Using the recursive relation 
(2) and the inductive hypothesis yields 𝑇 𝑘 + 1 = 𝑇 𝑘 + 1 = 𝑘 + 1 +
1 = 𝑘 + 2, as desired. 

• Since condition (1) is a generalization of (2), in which the Θ-
interpretation is not affected by the differences between (1) and (2), it 
follows that condition (1) satisfies 𝑇 𝑛 = Θ(𝑛). 
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Computing Fibonacci Numbers 

RecursiveFibonacci(n) 

 

Input: a non-negative number n 

Output: the Fibonacci number with index n 

 

If n=0 then return 1 

If n=1 then return 1 

 

f =RecursiveFibonacci(n-1) + RecursiveFibonacci(n-2) 

 

Return(f) 
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Recursion Tree 
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Sequential Search (Non-Recursive) 

The traditional non-recursive sequential search algorithm is presented 
so that it can be compared to the recursive implementation of binary 
search that is given later. 

Consider the problem of searching an unordered set of data by a 
traditional sequential search.  

• In the worst case, every item must be examined, since the item being 
sought i) might not exist or ii) might be the last item listed.  

• So, without loss of generality, it is assumed that the sequential search 
starts at the beginning of the unordered data set and concludes based 
on one of the following conditions.   

• The search succeeds when the required item is located. 

• The search fails after every item has been examined without 
finding the item being sought.  
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Sequential Search (continued) 

Since the data is not known to be ordered, the sequential 
examination of data items is necessary. Note that if any data 
item is skipped, that item could be the one being sought. 

Figure 2-1. An example of sequential search. Given the array of 
data, a search for the value 4 requires five key comparisons. A 
search for the value 9 requires three key comparisons. A search 
for the value 1 requires seven key comparisons in order to 
determine that the requested value is not present.  
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Subprogram SequentialSearch (X, searchValue, success, foundAt)  
(continued) 

Action:  

  position = 1 

  Do 

     success = (searchValue = X[position])  

     If success, then foundAt = position 

     Else position = position + 1 

   While (Not success) and (position ≤ 𝑛 )   {End Do} 

   Return success, foundAt 

End Search 
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Analysis of Sequential Search 

• The set of instructions inside the loop runs in Θ 1  time since each 
instruction runs in Θ 1  time.  

• In the worst case, the body of the loop will be executed 𝑛 times.  

• This occurs when either the search is unsuccessful or when the 
item we seek is the last item in the array X.  

• Thus, the worst-case sequential search runs in Θ 𝑛  time.  

• Assuming that the data is ordered in a truly random fashion, then a 
successful search will, on average, succeed after examining half of 
the entries.  

• So, the average successful search runs in Θ 𝑛  time.  

• Finally, since the data is presented in a random fashion, it is possible 
that the item being sought is found immediately. So, the time 
required for the best-case search is Θ 1 . 
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Binary Search 

• Recursion is commonly used when every recursive call 
involves a significant reduction in the size of the current 
instance of the problem.  

• An example of such a recursive algorithm is Binary Search. 

• Consider the impact of performing a search on a sorted set of 
data. Think about designing an algorithm that mimics what 
you would do to find “Miller” in a hardcopy phone book.  

• That is, grab a bunch of pages and flip back and forth, each 
time grabbing fewer and fewer pages, until the desired 
item is located. 

• Notice that this method considers very few data values 
relative to the number considered by a sequential search. 
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Subprogram BinarySearch(X, searchValue, success, foundAt, 
minIndex, maxIndex) 

Algorithm: Binary search algorithm to search ordered subarray  
for a key field equal to searchValue. 

The algorithm is recursive. In order to search the entire array, 
assuming indices 1,… , 𝑛, the initial call is of the form Search(X, 
searchValue, success, foundAt, 1, 𝑛). 

If searchValue is found, return success = true and foundAt as an 
index at which searchValue is found; otherwise, return success = 
false. 

Local variable: index midIndex 

Action:  

   If minIndex > maxIndex, then {The subarray is empty} 

      success = false, foundAt = 0 

   Else  {The subarray is nonempty} 
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BinarySearch Algorithm (continued) 

     midIndex = (minIndex + maxIndex) / 2  
     If searchValue = X[midIndex].key, then 
         success = true, foundAt = midIndex 
     Else {searchValue ≠ X[midIndex].key} 
         If searchValue < X[midIndex].key, then 
            BinarySearch(X, searchValue, success, foundAt,  
                        minIndex, midIndex - 1) 
         Else { searchValue > X[midIndex].key} 
            BinarySearch(X, searchValue, success, foundAt,  
                        midIndex + 1, maxIndex); 
      End {Else searchValue ≠ X[midIndex].key} 
   End {Subarray is nonempty} 
End Search 
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Examples of Binary Search 

Figure 2-2. Given the array of data, a search for the value 4 
requires two key comparisons (6,4). A search for the value 9 
requires three key comparisons (6,8,9). A search for the value 1 
requires three key comparisons (6,4,3) in order to determine 
that the value is not present.  
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Analysis of Binary Search 

• Each recursive call processes an interval of about ½ the length 
of the interval processed by the previous call, so the running 
time, 𝑇(𝑛), of the binary search algorithm satisfies the 
recursive relation 

𝑇 1 = Θ(1); 

𝑇 𝑛 ≤ 𝑇
𝑛

2
+ Θ(1). 

• Seeking a pattern: Notice in the worst case, 

𝑇 𝑛 = 𝑇
𝑛

2
+ Θ 1 = 

𝑇
𝑛

4
+ Θ 1 + Θ 1 = 𝑇

𝑛

4
+ 2Θ 1 = 

𝑇
𝑛

8
+ Θ 1 + 2Θ 1 = 𝑇

𝑛

8
+ 3Θ 1 . 

• It appears 𝑇 𝑛 = 𝑇 𝑛/2𝑘 + 𝑘Θ 1 , where the argument of 

T reaches the base value 1 = 𝑛/2𝑘 when 2𝑘 = 𝑛, or 
𝑘 = log2 𝑛. Such a pattern leads us to the conjecture that 

𝑇 𝑛 = 𝑇 1 + log2 𝑛 × Θ 1 = Θ log 𝑛 . 
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Analysis of Binary Search (continued) 

The conjecture that in the worst case, 𝑇 𝑛 = Θ log 𝑛 , and thus 
that in general, 𝑇 𝑛 = 𝑂 log 𝑛 , is established by showing, 
using mathematical induction, that the worst-case recursion 
derived from the previous discussion,  

𝑇 1 = 1; 

𝑇 𝑛 = 𝑇
𝑛

2
+ 1, 

resolves as 𝑇 𝑛 = 1 + log2 𝑛. The proof is left as an exercise. 
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Comparison of Sequential and Binary Searches 

  Sequential 

search 

Binary search 

Data Not ordered Ordered by search 

key 

Time for search that fails  Θ(𝑛)  Θ(log 𝑛) 

Worst-case time for search 

that succeeds 

 Θ(𝑛)  Θ(log 𝑛) 

Expected-case time for 

search that succeeds 

 Θ(𝑛)  Θ(log 𝑛) 

Best-case time for search 

that succeeds 

 Θ(1)  Θ(1) 
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Figure 2-3. Recursively sorting a set of data. Take the initial list and 
divide it into two lists, each roughly half the size of the original list. 
Recursively sort each of the sublists. Merge these sorted sublists to 
create the final sorted list.  

Recursive Sorting Algorithms 
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Analyzing a Recursive Sorting Algorithm 

The recursive relation that describes the running time of such an 
algorithm is given by 

𝑇 1 = Θ 1 ; 
𝑇 𝑛 = 𝑆 𝑛 + 2𝑇(𝑛 2) + 𝐶 𝑛 ,  

where 𝑆 𝑛  is the time used by the algorithm to split a list of n 
entries into two sublists of approximately 𝑛/2 entries apiece, and 
𝐶 𝑛  is the time used by the algorithm to combine two sorted 
lists of approximately 𝑛/2 entries apiece into a single sorted list. 
 
 
Discuss 𝑆 𝑛 = Θ(𝑛) since S = Split = Θ(𝑛) and C = Merge = Θ(𝑛)  
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Merge Sort: The Split Step 
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• Divide the input list X into 2 other lists Y and Z in a simple fashion. 
• A commonly used method: mimic how you might partition a deck 

of cards into 2 piles of equal size. 
• Elements of X alternate between going into Y and going into Z.   
• E.g., a member whose initial rank in X is odd goes into Y and a 

member whose initial rank in X is even goes into Z. 
• This is illustrated in Figure 2-3, above. 
 

• Analysis: This step is essentially a scan of X, hence is performed in 
𝑆 𝑛 = Θ(𝑛) time. 
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Merge Sort: The Combine Step 
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Combine step: since the recursive calls have produced Y and Z  as 
sorted lists, merge these sorted lists into a sorted list X. 

Figure 2-5. An example of 
merging two ordered lists, 
initially indexed by head1 and 
head2, to create an ordered list 
headMerge. Snapshots are 
presented at various stages of 
the algorithm.  As the merge 
progresses, head1 and head2 
each indexes the first 
unmerged node in their 
respective list. 
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Merging Two Lists 
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Input:  lists Y and Z with a total of n members, each in ascending order 
Output: list X, initially empty, is output with members that were the 
input members of Y and Z , in ascending order 
Action: 
While Y and Z are both non-empty, do the following. 

Compare the first members of Y and Z . Whichever has the smaller 
key value is removed from its list and placed at the end of X. Note 
one of Y and Z shrinks, and X grows. This is done in Θ(1) time. 

End While. The time required for this loop is bounded above by 𝑂(𝑛) 
and below by the length of the shorter of the input lists. In a general 
merge, the best case runs in Θ(1) time. In Merge Sort, the input Y and 
Z  have approximately 𝑛/2 members each. Thus, the loop runs in Θ(𝑛) 
time.  
Now, one of Y and Z  is empty, and the other isn’t. Concatenate X and 
the non-empty one of Y and Z  in Θ(1) time. 
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Merge Sort: Analysis 
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• The running time of Merge Sort satisfies 
𝑇 1 = Θ 1 ; 

𝑇 𝑛 = 𝑆 𝑛 + 2𝑇(𝑛 2) + 𝐶 𝑛 ,  
where the splitting time is  𝑆 𝑛 = Θ(𝑛) and the combine time is 
the time for a merge operation, 𝐶 𝑛 = Θ(𝑛). 

• This yields 
𝑇 1 = Θ 1 ; 

𝑇 𝑛 = 2𝑇(𝑛 2) + Θ 𝑛 . 
• The recursive relation is resolved as 

𝑇 1 = 1; 
𝑇 𝑛 = 2𝑇(𝑛 2) + 𝑛 , 

by substituting 𝑛 = 2𝑘. This gives 
𝑇 1 = 1; 

𝑇 2𝑘 = 2𝑇 2𝑘−1 + 2𝑘. 

Chapter 2 / Slide 41 

} →Θ(n log n) 



Merge Sort Analysis 
(continued) 
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• Using mathematical induction on k yields 
𝑇 𝑛 = 𝑛 1 + log2 𝑛 . 

The details of how this is done are left as an exercise. 
 
• Hence, Merge Sort runs in Θ 𝑛 log 𝑛  time. 
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