NAME:

This exam is closed book/notes/neighbors/etc. Answer all questions on these exam pages. No code or pseudo-code is necessary - just a precise and concise explanation and justification. Unsupported work will receive no credit.

Q1 of 5 (8 pts) Prove that $\sum_{k=1}^{n} k^{1 / 4}=\Theta\left(n^{5 / 4}\right)$.

NAME:
Q2 of 5 (4 pts) Discuss the advantages and disadvantages of a linear array of size n as compared to a hypercube of size n. Be very clear and concise.

NAME:

Q3 of 5 (4 pts) Draw a mesh-of-trees of base size 16.

NAME:

Q4 of 5 (8 pts) Give an asymptotically optimal algorithm to sum a set of n values on a PRAM of size n. Initially, there exists one such value in each of the first n memory locations. When complete, the sum of these values should be in memory location $n+1$. State and justify the asymptotic running time of your algorithm and asymptotic cost of your algorithm.
a. Algorithm (4 pts)
b. Asymptotic Running Time of Your Algorithm (2 pts)
c. Asymptotic Cost of Your Algorithm (2 pts)

NAME:
Q5 of 5 (6 pts) Draw an optimal combinational circuit to determine the minimum of 8 input items.

