Fall 2025 Exam I (scaled to 30 points) Thursday, October 2

DO NOT OPEN THIS EXAM UNTIL YOU ARE INSTRUCTED TO DO SO

Name:	Student ID No.

- 1. NO TALKING FROM THE TIME YOU ENTER THE EXAM ROOM UNTIL YOU HAVE EXITED THE EXAM ROOM! Any violation will earn you an F on the exam, at a minimum.
- 2. If you have a question, come to the front of the room and whisper very quietly to the professor.
- 3. Please note any concerns of interpretation of a question on your exam.
- 4. Write the exam with a dark colored pen or pencil. Light colored pens or pencils do not scan well.
- **Plagiarism** will earn you an F in the course and a recommendation of expulsion from the university.
 - **a.** You may not refer to any material outside of this exam.
 - **b.** That is, you may **not** refer to notes, books, papers, calculators, phones, watches, other electronic devices, classmates, classmates' exams, and so forth
 - c. Do not talk to fellow students at any time while in the exam room.
- Answer all questions on these pages. No code or pseudo-code is necessary just a precise and concise explanation and justification.
- Unsupported work will receive no credit.

Q1 (6 pts) Solve the following precisely by providing the integer result. Show your work.

$$\sum_{i=1}^{1000} i$$

Q2 (6 pts) Given the following:

- Algorithm A runs in time $T_1(n) = 2n^2 + 24n + 97$
- Algorithm B runs in time $T_2(n) = 12n + 14$
- Algorithm C runs in time $T_3(n) = 53n \log n + 73n + 1024$

Order the algorithms from fastest (best) to slowest (worst), based on their running times as *n* gets large. Justify your answer.

Q3 (6 pts) Given a CREW PRAM with n processors, such that processor P_i initially stores data value d_i , give an asymptotically optimal algorithm to compute the parallel prefix minimum of the n data values. Justify your answer.

Q4 (6 pts) Given a CREW PRAM with n data values initially stored such that memory location M_i contains data value d_i , give an asymptotically cost-optimal solution with asymptotically optimal running time to compute the sum of the n data values. Justify your answer.

Q5 (6 pts) Given a linear array with n pieces of data evenly distributed amongst the processors, give an asymptotically cost-optimal solution with asymptotically optimal running time to compute the sum of the n values. Justify your answer.

Extra Credit (1 pt) Circle an area of computer science that Dr Miller works in.

- 1. Artificial Intelligence
- 2. Data Analytics
- 3. Computational Geometry
- 4. Fluid Flow Optimization

Extra Credit (1 pt) Where did Dr Miller grow up?

- 1. Buffalo
- 2. Manhattan
- 3. Rochester
- 4. Long Island