
PARALLELIZING
FAST FOURIER
TRANSFORM
CSE 633 – Aaqib Wadood Syed

OUTLINE

Background Applications
Cooley-Tukey

Algorithm

Sequential

Implementation
Parallel

Implementation

Results &

Inferences

To-Do

Checklist

BACKGROUND:
DEFINING FOURIER TRANSFORM
AND DISCRETE FOURIER
TRANSFORM

 FT is a mathematical transform that decomposes functions into

frequency components, which are represented by the output of the

transform as a function of frequency.

 DFT does the same but over a finite sequence of equally-spaced

samples of a function.

WHAT IS FAST
FOURIER
TRANSFORM?

 It is an algorithm that takes a

discrete time-domain signal and

transforms it into a discrete

frequency-domain signal

efficiently.

 This enables us to identify the

frequency components of a signal

and analyze its behavior.

APPLICATIONS

 The FFT (Fast Fourier Transform) algorithm is widely used in diverse fields

due to its efficiency in computing the Discrete Fourier Transform. Some of

the key applications of the FFT include:

1. Signal processing

2. Audio and image compression

3. Scientific simulations

COOLEY–TUKEY
ALGORITHM

 Simplest and most common approach is the

“radix-2” Decimation-In-Time approach.

 The input sequence is repeatedly divided into two

smaller even and odd sub-sequences, and their

DFTs are combined using a butterfly operation.

Strategy: Divide-and-Conquer

Complexity: O(NlogN)

(Source: Wikipedia)

PARALLEL
IMPLEMENTATION

 The Fast Fourier Transform (FFT) algorithm

utilizes a Butterfly Topology as its fundamental

building block, which can be efficiently

parallelized to improve computation speed and

reduce processing time.
(Source: Wikipedia)

(Basic Butterfly Unit)

Twiddle factor:
WN

k = e−i2πk/N

SEQUENTIAL VS PARALLEL

PARALLEL IMPLEMENTATION USING MPI

Broadcast

BarrierBarrier

Broadcast Broadcast

Non-blocking

Send

Output

Non-blocking

Send

Non-blocking

Send

SLURM SCRIPT

RESULTS

of Processors

(# of Inputs)

Sequential

Execution

Time (ms)

Parallel

Execution

Time (ms)

Parallel

Execution

Time (ms)

(Non-blocking)

32 0.01 1 0.7

64 1 3 2.8

128 10 5.1 6.32

256 40 15 13

512 170.61 104 97

1024 740 152 150.1

2048 2580.45 312.75 253

INFERENCES

 As the number of processors increases, the speedup improves.

 Non-blocking I/O reduces communication overhead and improves scalability of

parallel algorithms.

 When using MPI, processors on the same node utilize shared memory implicitly

instead of message passing for communication leading to more efficient

communication.

TO-DO CHECKLIST

Try to establish direct

communication between

worker nodes for data

passing.

Evaluate performance for a

higher number of inputs.

Explore non-blocking

communication functions

like MPI_Isend() and

MPI_Irecv().

✓ ✓

REFERENCES

 Chu, E., & George, A. (1990). FFT Algorithms and their adaptation to

parallel processing. IEEE Transactions on Computers, 39(3), 420-430.

 Halawi, O. N. (2010). Parallel Fast Fourier Transform. Journal of Parallel and

Distributed Computing, 70(1), 1-14.

 "Fourier Transform - A visual introduction" - 3Blue1Brown [Youtube]

 "The Remarkable Story Behind The Most Important Algorithm Of All Time“

-Veritasium [Youtube]

QUESTIONS

	Slide 1
	Slide 2: Outline
	Slide 3: Background: Defining Fourier transform and Discrete Fourier transform
	Slide 4: What is Fast Fourier Transform?
	Slide 5: Applications
	Slide 6: Cooley–Tukey algorithm
	Slide 7: Parallel Implementation
	Slide 8: Sequential vs Parallel
	Slide 9: Parallel Implementation using MPI
	Slide 10: Slurm Script
	Slide 11: Results
	Slide 12: Inferences
	Slide 13: TO-DO Checklist
	Slide 14: References
	Slide 15: Questions

