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• A* algorithm is a popular pathfinding algorithm used in game 

theory and navigation.

• It makes use of a heuristic cost function to find the solution quickly.

• The heuristic cost function uses the sum of two parameters, 

‘current cost’ and ‘predicted cost’ to calculate the optimal path.

• All relevant nodes are kept in 2 lists, ‘visited’ and ‘next’.

• The implementation resembles a dynamic programming approach, 

with the heuristic cost function determining the order in which the 

nodes are visited.

• Examples of admissible heuristic functions to minimize distance 

include Manhattan distance and Euclidean distance.

A* algorithm
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• The graph is broken down into equal size chunks.

• Each processor is assigned a chunk.

Hierarchical Parallel A* Algorithm
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• The graph is broken down into equal size chunks.

• Each processor is assigned a chunk.

• The processor then finds the entry/exit nodes for the chunk assigned to 

it.

• It calculates the actual cost of traversal for each combination of 

entry/exit nodes.

Hierarchical Parallel A* Algorithm
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• The graph is broken down into equal size chunks.

• Each processor is assigned a chunk.

• Each processor then finds the entry/exit nodes for the chunk assigned 

to it.

• They calculate the actual cost of traversal for each combination of 

entry/exit nodes.

• Estimate the average cost of horizontal or vertical traversal through the 

chunk and sends the value to the master.

• The master broadcasts the average cost of traversal through each 

chunk.

• Run A* algorithm on the node containing the starting node and all other 

nodes.

• When one solution is found, broadcast the cost to all nodes.

• Run until cutoff.

Hierarchical Parallel A* Algorithm
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Results
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• Size of the graph.

• Choice of algorithm to find the pairwise shortest path within 
a chunk.

• Nature of the graph.

• Unexpected behavior of code.

Factors influencing the results
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• Percentage error

• RMS error  = 1373.225 

• Which is a 1.748% deviation from the optimal path

Path Error
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• Run path smoothing algorithms on the obtained path.

• Find better estimates block length for Manhattan distance.

• Remove ‘optimizations’ and check time.

• Run the algorithm on actual maps.

Future scope
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• Near Optimal Hierarchic Pathfinding, Adi Botea, Martin Muller, Jonathan Schaeffer, 

https://webdocs.cs.ualberta.ca/~mmueller/ps/hpastar.pdf

• Implementation of Parallel Path Finding in a Shared Memory Architecture, David Cohen and 

Matthew Dallas, 

https://pdfs.semanticscholar.org/9201/badbffa25a272852e05401cedf68f8043a23.pdf

• Fringe Search: Beating A* at Pathfinding on Game Maps, Yngvi Bjornsson, Markus Enzenberger, 

Robert C. Holte and Jonathan Schaeffe, 

https://webdocs.cs.ualberta.ca/~games/pathfind/publications/cig2005.pdf

• Implementation of A*,  RedBlob Games, https://www.redblobgames.com/pathfinding/a-

star/implementation.html

• Game maps, Nathan Sturtevant, http://www.movingai.com/benchmarks/
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