
‘-

1

Abhishek Subramaniam

CSE 633: Parallel Algorithms

Instructor: Dr. Russ Miller

Hierarchical Parallel A*
Algorithm

‘-

2

• A* algorithm is a popular pathfinding algorithm used in game

theory and navigation.

• It makes use of a heuristic cost function to find the solution quickly.

• The heuristic cost function uses the sum of two parameters,

‘current cost’ and ‘predicted cost’ to calculate the optimal path.

• All relevant nodes are kept in 2 lists, ‘visited’ and ‘next’.

• The implementation resembles a dynamic programming approach,

with the heuristic cost function determining the order in which the

nodes are visited.

• Examples of admissible heuristic functions to minimize distance

include Manhattan distance and Euclidean distance.

A* algorithm

‘-

3

‘-

4

• The graph is broken down into equal size chunks.

• Each processor is assigned a chunk.

Hierarchical Parallel A* Algorithm

‘-

5

‘-

6

‘-

7

• The graph is broken down into equal size chunks.

• Each processor is assigned a chunk.

• The processor then finds the entry/exit nodes for the chunk assigned to

it.

• It calculates the actual cost of traversal for each combination of

entry/exit nodes.

Hierarchical Parallel A* Algorithm

‘-

8

‘-

9

‘-

10

• The graph is broken down into equal size chunks.

• Each processor is assigned a chunk.

• Each processor then finds the entry/exit nodes for the chunk assigned

to it.

• They calculate the actual cost of traversal for each combination of

entry/exit nodes.

• Estimate the average cost of horizontal or vertical traversal through the

chunk and sends the value to the master.

• The master broadcasts the average cost of traversal through each

chunk.

• Run A* algorithm on the node containing the starting node and all other

nodes.

• When one solution is found, broadcast the cost to all nodes.

• Run until cutoff.

Hierarchical Parallel A* Algorithm

‘-

11

Results

‘-

12

0

50

100

150

200

250

300

2 procs 4 procs 8 procs 16 procs 32 procs 64 procs

Time vs Num Procs

1000x1000 2000x2000

‘-

13

0

0.5

1

1.5

2

2.5

3

2 procs 4 procs 8 procs 16 procs 32 procs 64 procs

Speedup

1000x1000 2000x2000

‘-

14

• Size of the graph.

• Choice of algorithm to find the pairwise shortest path within
a chunk.

• Nature of the graph.

• Unexpected behavior of code.

Factors influencing the results

‘-

15

• Percentage error

• RMS error = 1373.225

• Which is a 1.748% deviation from the optimal path

Path Error

‘-

16

• Run path smoothing algorithms on the obtained path.

• Find better estimates block length for Manhattan distance.

• Remove ‘optimizations’ and check time.

• Run the algorithm on actual maps.

Future scope

‘-

17

• Near Optimal Hierarchic Pathfinding, Adi Botea, Martin Muller, Jonathan Schaeffer,

https://webdocs.cs.ualberta.ca/~mmueller/ps/hpastar.pdf

• Implementation of Parallel Path Finding in a Shared Memory Architecture, David Cohen and

Matthew Dallas,

https://pdfs.semanticscholar.org/9201/badbffa25a272852e05401cedf68f8043a23.pdf

• Fringe Search: Beating A* at Pathfinding on Game Maps, Yngvi Bjornsson, Markus Enzenberger,

Robert C. Holte and Jonathan Schaeffe,

https://webdocs.cs.ualberta.ca/~games/pathfind/publications/cig2005.pdf

• Implementation of A*, RedBlob Games, https://www.redblobgames.com/pathfinding/a-

star/implementation.html

• Game maps, Nathan Sturtevant, http://www.movingai.com/benchmarks/

References

https://webdocs.cs.ualberta.ca/~mmueller/ps/hpastar.pdf
https://pdfs.semanticscholar.org/9201/badbffa25a272852e05401cedf68f8043a23.pdf
https://webdocs.cs.ualberta.ca/~games/pathfind/publications/cig2005.pdf
https://www.redblobgames.com/pathfinding/a-star/implementation.html
http://www.movingai.com/benchmarks/

‘-

18

