N-BODY
SIMULATION
USING MPI

Abhyudaya Mourya
CSE 633 — Parallel Algorithms
Mentor: Dr. Russ Miller

University at Buffalo

Y8 | Departme thmptS
dEg ring
dAp'

lied Sciences

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Problem Statement

“N-body problem is a scientific problem where given n bodies/particles in a
system, with mass, initial position and initial velocity for each, we need to
determine how they evolve over time under the mutual set of forces acting
between them”

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Quick Review: Basic Numerical (Serial) Solution

* Input: n bodies, masses {m,, m,, ..., m,,}, initial positions { %x, 9x, ..., 9x }

. P P O O 0
and initial velocities {7v, 3v, ..., nv}
* Assuming gravitational forces to be considered, acceleration is given by:
X Gmimy e %)

_Fi _ g =13 _ (g = x7)
a; ="/ = =).Gm :
i /mz m; 2k Kixg, —x; 12

* For time step t, we now get:

t+1
i

v — v = Av = laAt

X — x = Ax = WAt + >tane?

Thus, implying an 0(n?) run-time for each iteration of the problem

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Parallelized Solution — The Theory

1. Master core reads input data and broadcasts to all PUs

2. Each PU is then responsible for position and velocity update
of n/p particles

3. Each PU then collects data of other particles after time step
to act as input for the next step (MPI_Allgather)

4. Repeat 1-to-3

: n2.i, . _
* Runtimea (7), where:

n = No. of particles
| = No. of iterations
p = No. of processing elements

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Implementation Details

* All n particles divided across p processors, so that each processes n/p
particles for their dynamics update

* Once updated, the new data is then sent out via MPI_Allgather() to all
processors

* When assigning per processor data, we take ceiling of n/p and pad with
empty values to simplify the MPI_Allgather() operation

* Input structure as below:
Mass, X coordinate, Y _coordinate, Velocity x, Velocity y

* These are randomly generated using a separate simple python script

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Challenges

* Designing & Coding
« For p processors, there will be approximately p? inter-processor
communication calls

e Accuracy: in large computations with large quantity of floats,
precision errors need to be tracked to avoid compounding over
time

* Benchmarking

 There are 4 variables for the input data viz. no. of particles (n),
no. of iterations (i), no. of nodes (N) and no. of cores per nodes

(c)
 These need to be converted to standard n vs p formats for better
comprehension

* Further more, these presented a huge number of combinations in
comparison to simpler n vs p problems

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Assumptions & Solutions

2-D Domain Only

For simplification in operations and visualization, use only 2-D
coordinates for position and velocity

Cyclic Boundaries

Since over time the particles may float off to very long distances
(and out-of-bound distance values) causing issues with visualization
Benchmarking against 1-processor case for accuracy

Consider base case runs and compare the final states of all runs to
base case (states of all particles) for accuracy verification

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Assumptions & Solutions

* Selecting correct set of data points to benchmark (and optimize the
number of runs)

Used Design-Expert tool for selection of optimum data points so as
to optimize the combinations to be run

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Results Classifications

 Fixed data size results

* Fixed problem vs processor size results

e Cumulative results

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Results for Fixed n-values (2000P 30001)

Time vs PE

Nodes Cores per Node| PE Time
2 4 8 388.53
8 1 8 400.7
8 4 32 57.75
4 8 32 51.67
16 4 64 48.84
32 4 128 45.33
32 8 256 35.66
64 8 512 30.89

10

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Results for Fixed n-values (100P 30001)

Time vs PE

Nodes Cores per Node PE Time
1 1 1 7.71
2 4 8 1.97
8 2 16 1.66
4 4 16 1.37
8 4 32 1
8 8 64 1.12
32 8 256 1.15

11

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Results for Fixed p values

! . Cores per

Time vs Problem Size
0w | 4 | o | 5| oc|
o | 4 | o | s |wmes
oo | 4 | 2 | s |amss]

100 0.03
o | s | 4 | s | s0s
oo | s | 4 || s
o | s | s |es | o
oo | s | s | es | s
—8—32PE —@—64PE —@— 256PE g _ 256

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Cumulative Results

PE vs Runtime

100 150 200

—&— 100P 1001 —@— 100P 3000l 2000P 1001 1050P 15501 —@— 2000P 3000l

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Inferences

* Based on Gustafson’s law, true application of parallel processing where
we solve “bigger” problems rather than solving problems “faster”

* Forlower number of particles, we are able to see Amdahl’'s law being a
blocker to performance because of the higher ratio of communication to

processing

* For higher problem sizes with corresponding increase in processor size,
the problem does indeed scale very well

14

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

(Not-so-Good!) Visualization

Note: PDF Version may have issues playing the video 15

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

References

e https://software.intel.com/en-us/download/intel-mpi-library-for-linux-os-
developer-guide

 http://mwvww.scholarpedia.org/article/N-body simulations (gravitational)

* https://en.wikipedia.org/wiki/N-body problem

e Code will be hosted at: https://github.com/\WWhizK1D/cse633-mpi-nbody-
simulation

16

https://software.intel.com/en-us/download/intel-mpi-library-for-linux-os-developer-guide
http://www.scholarpedia.org/article/N-body_simulations_(gravitational)
https://en.wikipedia.org/wiki/N-body_problem
https://github.com/WhizK1D/cse633-mpi-nbody-simulation

University at Buffalo
GB | Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

..

QUESTIONS?

Thank you!

