
‘-

1

Abhyudaya Mourya

CSE 633 – Parallel Algorithms

Mentor: Dr. Russ Miller

N-BODY
SIMULATION
USING MPI

‘-

2

Problem Statement

“N-body problem is a scientific problem where given n bodies/particles in a

system, with mass, initial position and initial velocity for each, we need to

determine how they evolve over time under the mutual set of forces acting

between them”

‘-

3

• Input: n bodies, masses {𝑚1, 𝑚2, …, 𝑚𝑛}, initial positions { 1
0𝑥, 2

0𝑥, …, 𝑛
0𝑥 }

and initial velocities {1
0𝑣, 2

0𝑣, …, 𝑛
0𝑣 }

• Assuming gravitational forces to be considered, acceleration is given by:

𝒂𝒊 = ൗ𝑭𝒊 𝑚𝑖 =
σ𝑘 𝐺𝑚𝑖𝑚𝑘

(𝑥𝑘 −𝑥𝑖)

|𝑥𝑘 −𝑥𝑖|
3

𝑚𝑖
= σ𝑘𝐺𝑚𝑘

(𝑥𝑘 − 𝑥𝑖)

|𝑥𝑘 −𝑥𝑖 |
3

• For time step t, we now get:

𝑖
𝑡+1𝑥 − 𝑖

𝑡𝑥 = ∆𝑥 = 𝑖
𝑡𝑣∆𝑡 + 1

2 𝑖
𝑡𝑎∆𝑡2

𝑖
𝑡+1𝑣 − 𝑖

𝑡𝑣 = ∆𝑣 = 𝑖
𝑡𝑎∆𝑡

Thus, implying an 𝑂 𝑛2 run-time for each iteration of the problem

Quick Review: Basic Numerical (Serial) Solution

‘-

4

Parallelized Solution – The Theory

1. Master core reads input data and broadcasts to all PUs

2. Each PU is then responsible for position and velocity update
of n/p particles

3. Each PU then collects data of other particles after time step
to act as input for the next step (MPI_Allgather)

4. Repeat 1-to-3

• Runtime α (
𝑛2.𝑖

𝑝
); where:

n = No. of particles

i = No. of iterations

p = No. of processing elements

‘-

5

• All n particles divided across p processors, so that each processes n/p

particles for their dynamics update

• Once updated, the new data is then sent out via MPI_Allgather() to all

processors

• When assigning per processor data, we take ceiling of n/p and pad with

empty values to simplify the MPI_Allgather() operation

• Input structure as below:

Mass, X_coordinate, Y_coordinate, Velocity_x, Velocity_y

• These are randomly generated using a separate simple python script

Implementation Details

‘-

6

• Designing & Coding

• For p processors, there will be approximately 𝑝2 inter-processor

communication calls

• Accuracy: in large computations with large quantity of floats,

precision errors need to be tracked to avoid compounding over

time

• Benchmarking

• There are 4 variables for the input data viz. no. of particles (n),

no. of iterations (i), no. of nodes (N) and no. of cores per nodes

(c)

• These need to be converted to standard n vs p formats for better

comprehension

• Further more, these presented a huge number of combinations in

comparison to simpler n vs p problems

Challenges

‘-

7

• 2-D Domain Only

For simplification in operations and visualization, use only 2-D

coordinates for position and velocity

• Cyclic Boundaries

Since over time the particles may float off to very long distances

(and out-of-bound distance values) causing issues with visualization

• Benchmarking against 1-processor case for accuracy

Consider base case runs and compare the final states of all runs to

base case (states of all particles) for accuracy verification

Assumptions & Solutions

‘-

8

• Selecting correct set of data points to benchmark (and optimize the

number of runs)

Used Design-Expert tool for selection of optimum data points so as

to optimize the combinations to be run

Assumptions & Solutions

‘-

9

• Fixed data size results

• Fixed problem vs processor size results

• Cumulative results

Results Classifications

‘-

10

Results for Fixed n-values (2000P 3000I)

Nodes Cores per Node PE Time

2 4 8 388.53

8 1 8 400.7

8 4 32 57.75

4 8 32 51.67

16 4 64 48.84

32 4 128 45.33

32 8 256 35.66

64 8 512 30.89

‘-

11

Results for Fixed n-values (100P 3000I)

Nodes Cores per Node PE Time

1 1 1 7.71

2 4 8 1.97

8 2 16 1.66

4 4 16 1.37

8 4 32 1

8 8 64 1.12

32 8 256 1.15

‘-

12

Results for Fixed p values

n Nodes

Cores per

Node PE Time

100 4 2 8 0.03

1050 4 2 8 107.63

2000 4 2 8 388.53

100 8 4 32 0.03

1050 8 4 32 29.34

2000 8 4 32 57.75

100 8 8 64 0.12

1050 8 8 64 21.15

2000 8 8 64 48.84

100 32 8 256 0.11

1050 32 8 256 16.73

2000 32 8 256 35.66

‘-

13

Cumulative Results

‘-

14

• Based on Gustafson’s law, true application of parallel processing where

we solve “bigger” problems rather than solving problems “faster”

• For lower number of particles, we are able to see Amdahl’s law being a

blocker to performance because of the higher ratio of communication to

processing

• For higher problem sizes with corresponding increase in processor size,

the problem does indeed scale very well

Inferences

‘-

15

(Not-so-Good!) Visualization

Note: PDF Version may have issues playing the video

‘-

16

• https://software.intel.com/en-us/download/intel-mpi-library-for-linux-os-

developer-guide

• http://www.scholarpedia.org/article/N-body_simulations_(gravitational)

• https://en.wikipedia.org/wiki/N-body_problem

• Code will be hosted at: https://github.com/WhizK1D/cse633-mpi-nbody-

simulation

References

https://software.intel.com/en-us/download/intel-mpi-library-for-linux-os-developer-guide
http://www.scholarpedia.org/article/N-body_simulations_(gravitational)
https://en.wikipedia.org/wiki/N-body_problem
https://github.com/WhizK1D/cse633-mpi-nbody-simulation

‘-

17

QUESTIONS?
Thank you!

