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Breadth-First Search
• It is a graph traversing algorithm 

• Starts with a given start node and traverse the 
graph layer wise. We then move towards the 
next level neighbors.

• Extra memory required, usually a queue.

• To keep track of unexplored child nodes.
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Applications of BFS
• Used to solve many graph theory problems like shortest path between two nodes for an unweighted 

graph.

• For computing the maximum flow in a flow network.

• In Social networking websites(e.g Linkedin ), we can find the ith connection of a source person.

• Detect cycles in an undirected graph
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Sequential BFS Algorithm
• Set all the vertices to not visited. 

• Create a queue and add the start node or nodes. 

• While the queue becomes not empty -

- Take the first node from queue and remove it

- If not visited already 

- Make the node visited

- Add all the neighbors of the node into the queue. 
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• Time Complexity will be O(N2) 
• Space Complexity will be O(N2) 
• N is total number of vertices and my implementation is based on 

adjacency matrix.



Parallel BFS Algorithm
• Similar algorithm as the sequential BFS. 

• Instead of popping out one vertex at a time, pop out all the nodes in the same level. (These nodes are 
known as frontier nodes)

• Level synchronous traversal. Each the processor will take a set of frontier vertices and calculate their 
next frontier vertices in parallel.

• For the above step we will need to partition the adjacency matrix and the vertices and allocate them to the 
processors.
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2-D Partition of Adjacency Matrix
• The adj matrix is divided into P blocks of 

size  !
"

X !
"

• Vertex are partitioned into N/P size 
groups.

• N – Number of Vertices

• P – Number of Processors (In my case 
it is always a perfect square)
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Steps of Parallel BFS Algorithm

• Do a transpose of the frontier vector 
between the processors.

• After this all the columns processors 
will have matching frontier with their 
local adjacency matrix.
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Steps of Parallel BFS Algorithm
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Before After
• We then do a column wise all 

gather for the frontier vertices.

• This will broadcast the required 
frontier vertices for each column.



Steps of Parallel BFS Algorithm

• Calculation of next frontier vertices is 
based on the current frontier vector 
that the processor has.

• Using the local adj matrix the next 
frontier vector is calculated

• Note that each processor row now 
has the full information of the next 
frontier vertices.
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Steps of Parallel BFS Algorithm

• Now we do a all to all gather row wise 
so that all the next frontier vectors are 
merged. (union)

• All the processors now know if they 
have any frontier element (Next 
frontier now becomes current local 
frontier) that they own.

• We mark the node as visited and 
store its parent node.
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Steps of Parallel BFS Algorithm

• We do a row wise all gather and then 
column wise all gather to broadcast 
the local frontiers globally.

• We continue the process till there is 
no vertices left in the global frontier 
vertices. 

• Note- The communication cost here 

is O( 𝑃 )
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Results
• For small number of processors the 

graph is linear but as the number of 
processor increases the speed up 
goes down.

• But due to parallel communication 
overhead, we get a point (“Sweet 
spot”) from where the speed up starts 
decreasing with increasing 
processors. 
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Results
• For large graphs (i.e size of 

adjacency matrix  > 108). The speed 
up remains keeps increasing linearly 
with increasing processors.

• As we increase the size of our 
problem input size, putting more 
processors makes more sense as it 
leads to more speed up. 
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Execution Time Vs Processor
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How Diameter affects 
the runtime
• The runtime of the algorithm depends 

on the diameter of the graph. 

• As we increase the diameter of 6 to 20. 
The runtime is also increased by a 
factor of around 3.3x.

• This is in fact expected as the number 
of rounds of the of the algorithm is also 
increased by the same factor

• PRAM asymptotic time complexity for a 
level-synchronous parallel BFS is O(D) 
where D is the diameter of the graph.

16



How Density affects 
runtime
• The runtime of the algorithm is not 

depending on the density of the 
graph.

• As we double the density of the graph 
from 33% to 66%, there is no 
significant change in the runtime.

• This is because we use a adjacency 
matrix based approach and do not 
take advantage of the sparseness of 
the matrix or the frontier vectors.
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Average Execution times

1 (Seq) 4 9 16 36 49 64 81 100 121 144*

800 2.55 2.2 0.96 0.55 0.3 0.24 0.18 0.17 0.13 0.15 0.38

1600 10.05 8.69 3.91 2.18 1.05 0.76 0.59 0.5 0.4 0.49 0.55

3200 39.77 35 15.66 9.11 4.14 3.03 2.31 1.9 1.49 1.3 1.15

6400 132 142 64.19 36.88 16.39 11.75 9.03 7.41 5.82 5.03 4.16

12800 545.54 547 254.53 142.17 62.02 46.46 36.47 29.1 23.3 20.07 16.54

25600 2566.99 2152.41 1006.26 584.11 258.76 189.89 142.79 119.56 92 78.87 67.29

51200 11052.59 8545.06 4080.1 2265.75 1050.67 753 572.11 453.41 379.88 311.34 256.66
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Processors 

Vertices 

* - Executed in 142 nodes with 1 processor and 1 node with 2 processor 



Conclusion & Challenges
• We see that for smaller input sizes after 100 processors the speedup is decreasing.

• We have access to only 143 nodes in the HPC cluster

• Was able to run with 10^5 Vertices ( 6 billion edges ) (320 GB of memory used) but had problems running 
10^6 vertices.
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Processor Vertices Execution Time
128x2 = 256 10^5 0.16 hrs

1 –> sequential 10^5 12.3 hrs (estimated)

Benefits of using HPC



Future Work
• Optimisation of the algorithm using sparse representation of the matrix .

• Use space efficient bitmaps for storing the data/vector.

• Inter-processor collective communication optimisation.
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Thank You
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