Parallelizing Maximum Sum Subsequence

SAKET ADUSUMILLI SPRING 2014 CSE 633 Dept. Computer science and engineering

Table of Contents

- Introduction
- Sequential Algorithm
- Parallelization
- Results

Maximum Sum Subsequence Problem

Determining a subsequence of a data set that sums to the maximum value with respect to any subsequence of the data set.

- Example:
- $X = \{-3, 5, 2, -1, -4, 8, 10, -2\}$
- The maximum sum subsequence= $\{5, 2, -1, -4, 8, 10\}$

Sequential Algorithm

```
Current_Max \leftarrow x_i

q \leftarrow i {Reset index of current subsequence}

End Else

If Current_Max > Global_Max Then

Global_Max \leftarrow Current_Max

u \leftarrow q

v \leftarrow i

End If

End For
```

Complexity: $\Theta(n)$

Parallelization

Approach:

Linear array Implementation Using parallel prefix.

We first compute the parallel prefix sums $S = \{p_0, p_1, \dots, p_{n-1}\}$ of $X = \{x_0, x_1, \dots, x_{n-1}\}$, where $p_i = x_0 \otimes \dots \otimes x_i$.

Next, compute the parallel postfix maximum of S. Let m_i denote the value of the postfix-max at position *i*, and let a_i be the associated index.

Next, for each *i*, compute $b_i = m_i - p_i + x_i$ and the solution corresponds to the maximum of the b_i 's, where *u* is the index of the position where the maximum of the b_i 's is found and $v = a_u$.

Example

Consider the input sequence $X = \{-3, 5, 2, -1, -4, 8, 10, -2\}$. The parallel prefix sum of X is $S = \{-3, 2, 4, 3, -1, 7, 17, 15\}$.

$m_0 = 17$	$a_0 = 6$	$b_0 = 17 - (-3) + (-3) = 17$
$m_1 = 17$	a ₁ = 6	$b_1 = 17 - 2 + 5 = 20$
$m_2 = 17$	a ₂ = 6	$b_2 = 17 - 4 + 2 = 15$
m ₃ = 17	a ₃ = 6	$b_3 = 17 - 3 + (-1) = 13$
m ₄ = 17	a ₄ = 6	$b_4 = 17 - (-1) + (-4) = 14$
$m_5 = 17$	a ₅ = 6	$b_5 = 17 - 7 + 8 = 18$
$m_6 = 17$	a ₆ = 6	$b_6 = 17 - 17 + 10 = 10$
$m_7 = 15$	a ₇ = 7	$b_7 = 15 - 15 + (-2) = -2$

We have a maximum subsequence sum of $b_1 = 20$. This corresponds to u = 1 and $v = a_1 = 6$, or the subsequence {5, 2, -1, -4, 8, 10}.

Running time (in seconds) of Sequential Algorithm on a single processor

Data Items	Time Taken			
1,000,000	0.00549			
5,000,000	0.034186			
10,000,000	0.057036			
25,000,000	0.14342			
50,000,000	0.292237			
100,000,000	0.571551			

Sequential Algorithm on a single processor

Running time (in seconds) of Parallel Prefix Approach

Number of Processors	2	4	8	16	32	64	128
Data Items							
1,000,000	0.027357	0.018844	0.014121	0.013244	0.050397	0.059169	0.137612
5,000,000	0.030936	0.021605	0.013785	0.014788	0.026265	0.052187	0.134169
10,000,000	0.271881	0.129775	0.099201	0.065835	0.135805	0.211822	0.504434
25,000,000	0.71324	0.384105	0.23034	0.17815	0.354905	0.472544	1.034197
50,000,000	1.472292	0.705677	0.328034	0.236339	0.45073	1.16811	1.69151
100,000,000	2.634892	1.332371	0.716712	0.468214	1.17876	2.115506	3.14566

Each line represents running time with n processors, where n ranges from 2 to 128

Each line represents running time with n data items, where n ranges from 1000000 to 10000000

Comparing Sequential and Parallel Approach

Conclusions

- Increasing the processors is not going to reduce the running time. In this
 problem there is no use in increasing the number of processors over 16.
- Communication time between the processors will take over the processing time within the processors.
- Efficient Parallel Algorithm is not possible with master worker approach.

References

Algorithms Sequential and Parallel, A Unified Approach ~Russ Miller, Laurence Boxer Thank you!