# Parallelizing Maximum Sum Subsequence 

SAKET ADUSUMILLI
SPRING 2014
CSE 633
Dept. Computer science and engineering

## Table of Contents

Introduction<br>Sequential Algorithm<br>Parallelization<br>Results

## Maximum Sum Subsequence Problem

Determining a subsequence of a data set that sums to the maximum value with respect to any subsequence of the data set.

## Example:

$X=\{-3,5,2,-1,-4,8,10,-2\}$
The maximum sum subsequence $=\{5,2,-1,-4,8,10\}$

## Sequential Algorithm

Global_Max $\leftarrow x_{0}$
$U \leftarrow 0$ \{Start index of global max subsequence\}
$\checkmark \leftarrow 0$ \{End index of global max subsequence\}
Current_Max $\leftarrow x_{0}$
$q \leftarrow 0$ \{Initialize index of current subsequence\}
For $i=1$ to $n-1$, do $\{$ Traverse list\}
Complexity: $\Theta(\mathrm{n})$
If Current_Max $\geq 0$ Then
Current_Max $\leftarrow$ Current_Max $+x_{i}$
Else
Current_Max $\leftarrow x_{i}$
$q \leftarrow i\{$ Reset index of current subsequence $\}$
End Else
If Current_Max > Global_Max Then
Global_Max $\leftarrow$ Current_Max
$U \leftarrow \mathrm{q}$
$\vee \leftarrow i$
End If
End For

## Parallelization

## Approach:

Linear array Implementation Using parallel prefix.

We first compute the parallel prefix sums $S=\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ of $X=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, where $p_{i}=x_{0} \otimes \ldots \otimes x_{i}$

Next, compute the parallel postfix maximum of $S$.
Let $m_{i}$ denote the value of the postfix-max at position $i$, and let $a_{i}$ be the associated index.

Next, for each $i$, compute $b_{i}=m_{i}-p_{i}+x_{i}$ and the solution corresponds to the maximum of the $b_{i}$ 's, where $u$ is the index of the position where the maximum of the $b_{i}$ 's is found and $v=a_{u}$.

## Example

Consider the input sequence
$X=\{-3,5,2,-1,-4,8,10,-2\}$. The parallel prefix sum of $X$ is $S=\{-3,2,4$, $3,-1,7,17,15\}$.
$m_{0}=17$

$$
a_{0}=6
$$

$m_{1}=17$
$a_{1}=6$

$$
b_{0}=17-(-3)+(-3)=17
$$

$b_{1}=17-2+5=20$
$m_{2}=17$
$a_{2}=6$
$b_{2}=17-4+2=15$
$m_{3}=17$
$a_{3}=6$
$b_{3}=17-3+(-1)=13$
$m_{4}=17$
$a_{4}=6$
$b_{4}=17-(-1)+(-4)=14$
$m_{5}=17$
$a_{5}=6$
$b_{5}=17-7+8=18$
$m_{6}=17$
$a_{6}=6$
$b_{6}=17-17+10=10$
$m_{7}=15$
$a_{7}=7$
$b_{7}=15-15+(-2)=-2$
We have a maximum subsequence sum of $b_{1}=20$. This corresponds to $u=1$ and $v=a_{1}=6$, or the subsequence $\{5,2,-1,-4,8$, $10\}$.

Running time(in seconds) of Sequential Algorithm on a single processor

| Data Items | Time Taken |
| :---: | :---: |
| $1,000,000$ | 0.00549 |
| $5,000,000$ | 0.034186 |
| $10,000,000$ | 0.057036 |
| $25,000,000$ | 0.14342 |
| $50,000,000$ | 0.292237 |
| $100,000,000$ | 0.571551 |

Running time(in seconds) of Parallel Prefix Approach

| Number of <br> Processors | 2 | 4 | 8 | 16 | 32 | 64 | 128 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Data Items |  |  |  |  |  |  |  |
| $1,000,000$ | 0.027357 | 0.018844 | 0.014121 | 0.013244 | 0.050397 | 0.059169 | 0.137612 |
| $5,000,000$ | 0.030936 | 0.021605 | 0.013785 | 0.014788 | 0.026265 | 0.052187 | 0.134169 |
| $10,000,000$ | 0.271881 | 0.129775 | 0.099201 | 0.065835 | 0.135805 | 0.211822 | 0.504434 |
| $25,000,000$ | 0.71324 | 0.384105 | 0.23034 | 0.17815 | 0.354905 | 0.472544 | 1.034197 |
| $50,000,000$ | 1.472292 | 0.705677 | 0.328034 | 0.236339 | 0.45073 | 1.16811 | 1.69151 |
| $100,000,000$ | 2.634892 | 1.332371 | 0.716712 | 0.468214 | 1.17876 | 2.115506 | 3.14566 |

Each line represents running time with $n$ processors, where $n$ ranges from 2 to 128

Each line represents running time with $\mathbf{n}$ data items, where $\mathbf{n}$ ranges from 1000000 to 100000000


## Comparing Sequential and Parallel Approach

0.8
0.7

## Conclusions

- Increasing the processors is not going to reduce the running time. In this problem there is no use in increasing the number of processors over 16.
- Communication time between the processors will take over the processing time within the processors.
- Efficient Parallel Algorithm is not possible with master worker approach.


## References <br> Algorithms Sequential and Parallel, A Unified Approach ~Russ Miller, Laurence Boxer

Thank you!

