
Parallelizing 

Maximum Sum 
Subsequence
SAKET ADUSUMILLI
SPRING 2014

CSE 633

Dept. Computer science and engineering



Table of Contents

• Introduction
• Sequential Algorithm

• Parallelization
• Results



Maximum Sum Subsequence 
Problem

Determining a subsequence of a data set that sums
to the maximum value with respect to any subsequence of the data 

set.

• Example:

• X = {−3, 5, 2, −1, −4, 8, 10, −2}

• The maximum sum subsequence= {5,2,-1,-4,8,10}



Sequential Algorithm
Global_Max ← x0

u ← 0 {Start index of global max subsequence}

v ← 0 {End index of global max subsequence}

Current_Max ← x0

q ← 0 {Initialize index of current subsequence}

For i = 1 to n − 1, do {Traverse list}

If Current_Max ≥ 0 Then

Current_Max ← Current_Max + xi

Else

Current_Max ← xi

q ← i {Reset index of current subsequence}

End Else

If Current_Max > Global_Max Then

Global_Max ← Current_Max

u ← q

v ← i

End If

End For

Complexity: Θ(n)



Parallelization

Approach:

Linear array Implementation
Using parallel prefix.

We first compute the parallel prefix sums S = {p0, p1, . . . , pn−1} of
X = {x0, x1, . . . , xn−1}, where pi = x0 ⊗. . . ⊗ xi.

Next, compute the parallel postfix maximum of S.

Let mi denote the value of the postfix-max at position i, and let ai be the 

associated index.

Next, for each i, compute bi = mi − pi + xi and the solution corresponds to the 

maximum of the bi’s, where u is the index of the position where the maximum 

of the bi’s is found and v = au.



Example

Consider the input sequence

X = {−3, 5, 2, −1, −4, 8, 10, −2}. The parallel prefix sum of X is S = {−3, 2, 4, 

3, −1, 7, 17, 15}.

m0 = 17 a0 = 6 b0 = 17 − (−3) + (−3) = 17

m1 = 17 a1 = 6 b1 = 17 − 2 + 5 = 20

m2 = 17 a2 = 6 b2 = 17 − 4 + 2 = 15

m3 = 17 a3 = 6 b3 = 17 − 3 + (−1) = 13

m4 = 17 a4 = 6 b4 = 17 − (−1) + (−4) = 14

m5 = 17 a5 = 6 b5 = 17 − 7 + 8 = 18

m6 = 17 a6 = 6 b6 = 17 − 17 + 10 = 10

m7 = 15 a7 = 7 b7 = 15 − 15 + (−2) = −2

We have a maximum subsequence sum of b1 = 20. This

corresponds to u = 1 and v = a1 = 6, or the subsequence {5, 2, −1, −4, 8, 

10}.



Data Items Time Taken

1,000,000 0.00549

5,000,000 0.034186

10,000,000 0.057036

25,000,000 0.14342

50,000,000 0.292237

100,000,000 0.571551

Running time(in seconds) of Sequential Algorithm on 

a single processor



0.00549

0.034186

0.057036

0.14342

0.292237

0.571551

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000000 5000000 10000000 25000000 50000000 100000000

Sequential Algorithm on a single processor



Number of 

Processors

2 4 8 16 32 64 128

Data Items

1,000,000 0.027357 0.018844 0.014121 0.013244 0.050397 0.059169 0.137612

5,000,000 0.030936 0.021605 0.013785 0.014788 0.026265 0.052187 0.134169

10,000,000 0.271881 0.129775 0.099201 0.065835 0.135805 0.211822 0.504434

25,000,000 0.71324 0.384105 0.23034 0.17815 0.354905 0.472544 1.034197

50,000,000 1.472292 0.705677 0.328034 0.236339 0.45073 1.16811 1.69151

100,000,000 2.634892 1.332371 0.716712 0.468214 1.17876 2.115506 3.14566

Running time(in seconds) of Parallel Prefix Approach



0

0.5

1

1.5

2

2.5

3

3.5

1000000 5000000 10000000 25000000 50000000 100000000

Each line represents running time with n processors, where n 

ranges from 2 to 128

2 4 8 16 32 64 128



0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32 64 128

Each line represents running time with n data items, where n 

ranges from 1000000 to 100000000

1000000 5000000 10000000 25000000 50000000 100000000



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000000 5000000 10000000 25000000 50000000 100000000

Comparing Sequential and Parallel Approach

8 Processors 16 Processors Single Processor(Sequential)



Conclusions

• Increasing the processors is not going to reduce the running time. In this 

problem there is no use in increasing the number of processors over 16.

• Communication time between the processors will take over the processing 

time within the processors.

• Efficient Parallel Algorithm is not possible with master worker approach.



References

Algorithms Sequential and Parallel, A Unified Approach ~Russ 

Miller, Laurence Boxer



Thank you!


