’ .~
University at Buffalo L 7 &5 "
Department of Computer Science g
and Engineering e
School of Engineering and Applied Sciences ,’
’
o

PARALLEL Q-LEARNING
& ACTOR-CRITIC

Alina Vereshchaka
CSE 633 Parallel Algorithms (Dr. Russ Miller)

April 16, 2020

Markov Decision Process

;eRHl :
S.. | Environment

Problem

Rt+1

St+l

Environment

action

Q-Learning Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) < Q(S, A) + a| R+ ymax, Q(5’,a) — Q(S, A)]
S+« 8

until S is terminal

Q-Learning Process

Parallel Q-Learning Process

Problem - Grid world

N x N square grid

Agent (yellow) starts at random positions
Goal (green): reach position (N-1, N-1)
Actions: {Down (0), Up (1), Right (2), Left (3)}
Rewards: {-1, -0.1, 0, 0.1, 1}

25
-05 00

0.5

10

15

20

25

Random Agent

CCR Resources

[II] FISBATCH
2521470

Cluster

Job Id

Job Name
User
Account
Partition
State
Reason
Total Nodes

Node List

Total CPUs
Time Limit
Time Used

Memory

Output Location:

% Open in File Manager

Intel Xeon Gold 6130 (2/node)

Academic Cluster
2521470
FISBATCH
avereshc
wendong

skylake
RUNNING

None

16

C€pN-u23-35, Cpn-u24-20, CpN-u24-21, CPN-U24-23, CpN-u24-24, CpPN-u24-25, CPN-U24-27, CPN-U24-28, CPN-U24-29, CPN-u24-30, CpN-u24-

31, cpn-u24-32, cpn-u24-33, cpn-u24-34, Cpn-u24-35, cpn-u24-36

512
1-00:00:00
12:05

48000M

/user/avereshc

>_ Open in Terminal

W Delete

Performance of 3 x 3 Grid (episodes = 1000)

Processors Time (in secs)

Time vs Number of Processors for 3x3 Grid Environment
1 0.18
0.8 1
0251 2 0.12
061 4 0.10
D
v 05 -
z 8 0.11
E 041
034 16 0.16
2 32 0.25
0.1 1
0 20 a0 60 80 100 120 64 0.50
Number of processors
86 0.59
128 0.85

Results of 3 x 3 Grid (episodes = 1000)

print(agent.q_table)

[[[©.23863131 ©.53740696 1.0729 ©.45049737]
[1.081 0.80910245 -0.12187289 ©.85137285]
[©.8217115 -©.29481583 0. 0.8708185%9]]
[[©.27783203 ©.73679678 1.081 -9.12274178]
[1.e9 0.4292045 1.87536036 -9.13@12733]
[1.09370094 -0.26834097 0. ©.80239136]]
[[-0.01 -0.11530044 ©0.78215181 e.]
[©.80135152 ©.16739 1 [©.35720553]

[o 0. 0. e. 111

Performance of 5 x 5 Grid (episodes = 2000)

Processors Time (in secs)
Time vs Number of Processors for 5x5 Grid Environment

1 0.39

09 1
08 1 2 0.27
2 4 0.195

§ 0611
g 8 0.175

g 051+
0.4 16 0.191
i 32 0.273

02 1
- - - ' - - - 64 0.481

0 20 40 60 80 100 120
Number of processors

86 0.641
128 0.939

Results of 5 x 5 Grid (episodes = 2000)

print(agent.q_table)

[[[1.247829 9.74745711 1.04172104 9.66@81483]
[1.85314392 0.84484722 0©.053@5683 9.71752684]
[1.e5%049 -9.14685591 0©.1578792 0.591269]
[©.86550979 -0.94124037 -0.46002143 -0.1459156]
[©.60888141 0. -0.70324048 -0.067@3397]]

[[©.86002122 ©.80571519 1.0531441 ©.58883431]
[@.8589567 9.84716299 1.05984¢2 ©.69579001]
[1.e6561 -0.14689648 0.05871875 ©.82878334]
[1.e729 -0.86888295 0.7563102 ©.85061755]
[©.99282828 o. 0.2157902 -©.15449581]]

[[-0.00286144 ©.84782955 0.04199235 ©.29319149]
[1.26113535 ©0.85299416 1.06568983 ©.51270305]
[1.8729 0.85902868 1.0463074 -0.1396225]
[©.88050105 -0.13747675 1.081 0.64558224]
[1.09 ©.28899989 ©0.58592215 9.49587816]]

[[1.8655121 0.68849239 0.43314204 0.]
[1.87289991 -0.14170876 ©.61100408 -©.21275152]
[1.e81 ©.86516686 ©.07177179 9.61531979]
[1.e9 0.85587013 ©.29483261 ©.4089936]
[3 0.16402212 0.36446386 -0.07294629]]

[[©.44017342 -0.25809691 1.07288728 ©.08655158]
[©.7818582 9.83022131 1.081 0.29010182]
[©.88094363 0.87200764 1.09 0.16517202]
[©.88999985 -0.11901329 1.1 ©.53968254]
[o. 0. 0.) 11]

Performance of 10 x 10 Grid (episodes = 5000)

) _ _ Processors Time (in secs)
Time vs Number of Processors for 10x10 Grid Environment

18 {7 | | | . A A 1 1.84
== 2 0.83
14 -
U 4 0.51
o 12
g 10 - 8 0.36
=
R 16 0.32
061
32 0.38
041
0 20 40 60 80 100 120 64 0.50
Number of processors
86 0.64

128 0.89

Results of 10 x 10 Grid (episodes = 5000)

Performance of 100 x 100 Grid (episodes = 50 000)

Processors Time (in secs)

1 17.33
Time vs Number of Processors for 100x100 Grid Environment
175 1 ¢ ~ ! ‘ ' 2 8.59
15.0 1
4 3.68
12.5 -
5 8 1.98
% 10.0 1 ~ - A A -
g 16 1.20
R | | |
50 - _ , , , | 32 0.84
25 - LW”’" i — 64 0.82
00] L] L]] Ll
0 100 200 300 400 500 86 0.79
Number of processors
128 0.91
256 1.29
512 2.1

Performance of 1000 x 1000 Grid (episodes = 500 000)

Processors Time (in secs)

1 139.70
Time vs Number of Processors for 1000x1000 Grid Environment
140 -9 . . 2 97.94
120 - ' ' ' ' ' 4 38.61
100 { ¢ ‘ | ‘ ‘ ' 8 25.92
g
G 16 9.99
1S
=
32 6.46
70 - 64 6.18
ol , |] 19 86 6.02
0 100 200 300 400 500
Number of processors 128 6.65
256 5.84
512 6.00

Asynchronous Advantage Actor Critic (A3C)

Asynchronous Advantage Actor-Critic:

e Sample for data can be parallelized using several copies of the same agent
use N copies of the agents (workers) working in parallel collecting samples
and computing gradients for policy and value function

e After some time, pass gradients to a main network that updates actor and
critic using the gradients of all agents

e After some time the worker copy the weights of the global network

This parallelism decorrelates the agents’ data, so no experience replay buffer
needed

Asynchronous Advantage Actor Critic (A3C)

>

/ Global Network

19

Asynchronous Advantage Actor Critic (A3C)

5. Worker q
updates global 1. Worker reset

network with to global
gradients network
4. Worker 2. Worker
gets interacts
gradients with
from losses environment
\ 3. Worker
calculates
value and
policy loss

Pong Deterministic by OpenAl Gym

Observation: an RGB image of the screen (210,
160, 3)

Each action is repeatedly performed for a duration
of k frames

Performance of A3C for Pong (OpenAl Gym)

Time vs Number of Processors for Pong A3C

100 -
Processors Time (in mins)
80 1 2 104.27
g
£ 4 46.59
QE; 60
= 8 31.18
40 - 16 28.29
32 18.03

20 -

-

Ll T

5 10 15 20 25 30
Number of processors

CCR Server Used: Intel Xeon Gold 6130 (2/node), NVidia Tesla V100 (2/node)

https://ark.intel.com/products/120492
https://www.nvidia.com/en-us/data-center/tesla-v100

Conclusion

Parallelization was done in multiprocessing (Python) to evenly distribute
episodes to each process with a random agent starting position for each
episode. This way each process will have its own Q-table and will eventually
be reduced by summing the main Q-table.

There is an improvement in runtime as the number of processes increases.
However, it is not very scalable because it is unable to maintain efficiency with
increasing problem size and number of processes.

Parallel Q-learning showed a faster convergence comparing to a sequential
version

L
A
~
Y
N
\\
23 ,/
’ >
& h

References

1. Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An
introduction”, Second Edition, MIT Press, 2019

2. Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement
learning." International conference on machine learning. 2016.

3. CCR Knowledge Base https://ubccr.freshdesk.com/support/solutions

https://ubccr.freshdesk.com/support/solutions

Thank you!

