CUDA Implementation of the Lattice Boltzmann Method

CSE 633 Parallel Algorithms

Andrew Leach

University at Buffalo

2 Dec 2010

A. Leach (University at Buffalo) CUDA LBM Nov 2010 1/16



@ The Lattice Boltzmann Method(LBM) solves the Navier-Stokes
equation accurately and efficiently.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 2/16



@ The Lattice Boltzmann Method(LBM) solves the Navier-Stokes
equation accurately and efficiently.

@ Uniformity makes it easy to parallelize.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 2/16



@ The Lattice Boltzmann Method(LBM) solves the Navier-Stokes
equation accurately and efficiently.

@ Uniformity makes it easy to parallelize.

@ High volume of simple calculations make it ideal for GPGPU
computing.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 2 /16



LBM Degrees of Freedom

F2
F6 FS
F3 <— —> F1
F7 i
F4 F8

@ Each lattice point has an associated mass density

A. Leach (University at Buffalo) CUDA LBM Nov 2010



LBM Degrees of Freedom

F2
F6 FS
F3 <— —> F1
F7 i
F4 F8

@ Each lattice point has an associated mass density

@ This mass density is projected in 9 directions

A. Leach (University at Buffalo) CUDA LBM Nov 2010



LBM Stream

@ At each time step, each neighbor passes mass density

A. Leach (University at Buffalo) CUDA LBM Nov 2010



LBM Collision
F6 FS

W
T

@ Collision occurs with the accepted mass densities

A. Leach (University at Buffalo) CUDA LBM Nov 2010



LBM Collision
F6 FS

W
T

@ Collision occurs with the accepted mass densities

o Equillibrium condition is solved

A. Leach (University at Buffalo) CUDA LBM Nov 2010



LBM Collision
F6 FS

W
T

@ Collision occurs with the accepted mass densities

o Equillibrium condition is solved

@ New projected mass densities are assigned

A. Leach (University at Buffalo) CUDA LBM Nov 2010



LBM Boundary Conditions

@ Bounceback is implemented at solid boundaries

A. Leach (University at Buffalo) CUDA LBM Nov 2010 6 /16



LBM Boundary Conditions

@ Bounceback is implemented at solid boundaries

@ The inlet has predetermined mass density

A. Leach (University at Buffalo) CUDA LBM Nov 2010



LBM Boundary Conditions

@ Bounceback is implemented at solid boundaries
@ The inlet has predetermined mass density

@ The outlet accepts outward flow

A. Leach (University at Buffalo) CUDA LBM Nov 2010



Code: Data Structures

FIL I I T T T T PT T T JHOST

LI T TP TP T ]Device

o Data initialized as an array on host

A. Leach (University at Buffalo) CUDA LBM Nov 2010 7 /16



Code: Data Structures

FIL I I T T T T PT T T JHOST

LI T TP TP T ]Device

o Data initialized as an array on host

@ Pitch stores the width of a row in memory, determined by
CudaMallocPitch()

A. Leach (University at Buffalo) CUDA LBM Nov 2010



Code: Data Structures

FIL I I T T T T PT T T JHOST

LI T TP TP T ]Device

o Data initialized as an array on host

@ Pitch stores the width of a row in memory, determined by
CudaMallocPitch()

@ Memory is allocated on the device linear memory with
CudaMallocArray()

A. Leach (University at Buffalo) CUDA LBM Nov 2010



Code: Data Structures

FIL I I T T T T PT T T JHOST

LI T TP TP T ]Device

Data initialized as an array on host

Pitch stores the width of a row in memory, determined by
CudaMallocPitch()

@ Memory is allocated on the device linear memory with
CudaMallocArray()

Array copied from host to device with CudaMemcpy2D()

A. Leach (University at Buffalo) CUDA LBM Nov 2010



Code: Textures

@ The stream step requires a lot of data retrieval

A. Leach (University at Buffalo) CUDA LBM Nov 2010 8 /16



Code: Textures

@ The stream step requires a lot of data retrieval

@ Texture memory has fast retrieval but limited space

A. Leach (University at Buffalo) CUDA LBM Nov 2010 8 /16



Code: Textures

@ The stream step requires a lot of data retrieval
@ Texture memory has fast retrieval but limited space

o Use cudaBindTextureToArray() to copy data as a texture

A. Leach (University at Buffalo) CUDA LBM Nov 2010 8 /16



Code: Kernels

@ A kernel is launched on a grid of blocks

A. Leach (University at Buffalo) CUDA LBM Nov 2010 9 /16



Code: Kernels

@ A kernel is launched on a grid of blocks

@ Each block consists of threads which will independently run the
kernel(SIMD)

A. Leach (University at Buffalo) CUDA LBM Nov 2010 9 /16



Code: Kernels

@ A kernel is launched on a grid of blocks

@ Each block consists of threads which will independently run the
kernel(SIMD)

@ What follows is the Kernel for the stream() method. This example
utilizes a lock-step texture look up.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 9 /16



//Define stream kernel//
_global__ void stream kernel(int pitch, float *fl, float *f2,
float *f3, float *f4, float *f5, float *f6, float *f7, float *f8){

int i, j, id;
= blockDim.x * blockIdx.x + threadIdx.x;

i=
j = blockDim.y * blockIdx.y + threadIdx.y;
id =1 + j * (pitch/sizeof(float));

//Gather adjacent f's for the stream step//

f1[id] = tex2D(f1l tex, (fleoat) i-1, (float) j);
f2[id] = tex2D(f2 tex, (fleat) i, (fleat) j-1);
f3[id] = tex2D(f3_tex, (fleat) i+l, (float) j);
f4[id] = tex2D(f4 tex, (float) i, (fleat) j+1);
f5[id] = tex2D(f5 tex, (fleat) i-1, (float) j-1);
f6[id] = tex2D(f6 tex, (fleat) i+1l, (float) j-1);
f7[id] = tex2D(f7 tex, (fleat) i+1l, (float) j+1);
f8[id] = tex2D(f8_tex, (float) i-1, (float) j+1);
}

A. Leach (University at Buffalo) CUDA LBM Nov 2010



Runtime Analysis

The following slides contain graphs comparing run times for the LBM on a
laptop with 1.3 GHZ processor running sequential C code and a single
Tesla GPU running parallel code in CUDA. The change in performance
based on block size is also explored.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 11 /16



Sequential vs Parallel

CPUvsGPU

/ ——C
/ —#— balanced block size
100 :
64 128 256 512 1024 2048 409 8192
Lattice Width

Time (seconds)
8 8 § 8 8

o
1

A. Leach (University at Buffalo) CUDA LBM Nov 2010



Sequential vs Parallel

A BlockSze
Comparison

/ l =o— 16 block size
// / - balanced block size
== |arge block size
/A

M

64 128 256 512 1024 2048 4096 8192
Lattice Width

Time (seconds)
o P00 B5RREG &

A. Leach (University at Buffalo) CUDA LBM Nov 2010



Sequential vs Parallel

=4— 16 speedup
—fli- balanced speedup
== |arge speedup

350 A
= 7 Speed up
250

speed up (X faster)

128 256 512 1024 2048 409%
Lattice Width

A. Leach (University at Buffalo) CUDA LBM Nov 2010 14 / 16



Thank You

Thanks to Dr.Graham Pullan from Cambridge University for letting me use
and modify his code. J

A. Leach (University at Buffalo) CUDA LBM Nov 2010 15 / 16



Bibliography

@ Alexander Wagner, A Practical Introduction to the Lattice Boltzmann
Method. North Dakota State University, March 2008.

@ Graham Pullan, A 2D Lattice Boltzmann Flow Solver Demo.

http://www.many-core.group.cam.ac.uk/projects/LBdemo.shtml,
University of Cambridge.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 16 / 16



