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@ The Lattice Boltzmann Method(LBM) solves the Navier-Stokes
equation accurately and efficiently.
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@ The Lattice Boltzmann Method(LBM) solves the Navier-Stokes
equation accurately and efficiently.

@ Uniformity makes it easy to parallelize.

@ High volume of simple calculations make it ideal for GPGPU
computing.
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LBM Degrees of Freedom
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@ Each lattice point has an associated mass density

@ This mass density is projected in 9 directions
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LBM Stream

@ At each time step, each neighbor passes mass density
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@ Collision occurs with the accepted mass densities
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LBM Collision
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@ Collision occurs with the accepted mass densities

o Equillibrium condition is solved

@ New projected mass densities are assigned
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LBM Boundary Conditions

@ Bounceback is implemented at solid boundaries
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LBM Boundary Conditions

@ Bounceback is implemented at solid boundaries
@ The inlet has predetermined mass density

@ The outlet accepts outward flow
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Code: Data Structures

FIL I I T T T T PT T T JHOST

LI T TP TP T ]Device

o Data initialized as an array on host
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Code: Data Structures

FIL I I T T T T PT T T JHOST

LI T TP TP T ]Device

Data initialized as an array on host

Pitch stores the width of a row in memory, determined by
CudaMallocPitch()

@ Memory is allocated on the device linear memory with
CudaMallocArray()

Array copied from host to device with CudaMemcpy2D()
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Code: Textures

@ The stream step requires a lot of data retrieval
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Code: Textures

@ The stream step requires a lot of data retrieval
@ Texture memory has fast retrieval but limited space

o Use cudaBindTextureToArray() to copy data as a texture
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Code: Kernels

@ A kernel is launched on a grid of blocks
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Code: Kernels

@ A kernel is launched on a grid of blocks

@ Each block consists of threads which will independently run the
kernel(SIMD)

@ What follows is the Kernel for the stream() method. This example
utilizes a lock-step texture look up.
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//Define stream kernel//
_global__ void stream kernel(int pitch, float *fl, float *f2,
float *f3, float *f4, float *f5, float *f6, float *f7, float *f8){

int i, j, id;
= blockDim.x * blockIdx.x + threadIdx.x;

i=
j = blockDim.y * blockIdx.y + threadIdx.y;
id =1 + j * (pitch/sizeof(float));

//Gather adjacent f's for the stream step//

f1[id] = tex2D(f1l tex, (fleoat) i-1, (float) j);
f2[id] = tex2D(f2 tex, (fleat) i, (fleat) j-1);
f3[id] = tex2D(f3_tex, (fleat) i+l, (float) j);
f4[id] = tex2D(f4 tex, (float) i, (fleat) j+1);
f5[id] = tex2D(f5 tex, (fleat) i-1, (float) j-1);
f6[id] = tex2D(f6 tex, (fleat) i+1l, (float) j-1);
f7[id] = tex2D(f7 tex, (fleat) i+1l, (float) j+1);
f8[id] = tex2D(f8_tex, (float) i-1, (float) j+1);
}
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Runtime Analysis

The following slides contain graphs comparing run times for the LBM on a
laptop with 1.3 GHZ processor running sequential C code and a single
Tesla GPU running parallel code in CUDA. The change in performance
based on block size is also explored.
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Sequential vs Parallel
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Sequential vs Parallel
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Sequential vs Parallel
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Thank You

Thanks to Dr.Graham Pullan from Cambridge University for letting me use
and modify his code. J
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