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Motivation

The Lattice Boltzmann Method(LBM) solves the Navier-Stokes
equation accurately and efficiently.

Uniformity makes it easy to parallelize.

High volume of simple calculations make it ideal for GPGPU
computing.
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LBM Degrees of Freedom
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Each lattice point has an associated mass density

This mass density is projected in 9 directions
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LBM Stream
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At each time step, each neighbor passes mass density
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LBM Collision
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Collision occurs with the accepted mass densities

Equillibrium condition is solved

New projected mass densities are assigned
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LBM Boundary Conditions

Bounceback is implemented at solid boundaries

The inlet has predetermined mass density

The outlet accepts outward flow
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Code: Data Structures

F1 HOST

Device

Data initialized as an array on host

Pitch stores the width of a row in memory, determined by
CudaMallocPitch()

Memory is allocated on the device linear memory with
CudaMallocArray()

Array copied from host to device with CudaMemcpy2D()
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Code: Textures

The stream step requires a lot of data retrieval

Texture memory has fast retrieval but limited space

Use cudaBindTextureToArray() to copy data as a texture
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Code: Kernels

A kernel is launched on a grid of blocks

Each block consists of threads which will independently run the
kernel(SIMD)

What follows is the Kernel for the stream() method. This example
utilizes a lock-step texture look up.
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Code: Stream
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Runtime Analysis

The following slides contain graphs comparing run times for the LBM on a
laptop with 1.3 GHZ processor running sequential C code and a single
Tesla GPU running parallel code in CUDA. The change in performance
based on block size is also explored.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 11 / 16



Sequential vs Parallel
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Thank You

Thanks to Dr.Graham Pullan from Cambridge University for letting me use
and modify his code.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 15 / 16



Bibliography

Alexander Wagner, A Practical Introduction to the Lattice Boltzmann
Method. North Dakota State University, March 2008.

Graham Pullan, A 2D Lattice Boltzmann Flow Solver Demo.
http://www.many-core.group.cam.ac.uk/projects/LBdemo.shtml,
University of Cambridge.

A. Leach (University at Buffalo) CUDA LBM Nov 2010 16 / 16


