
PARALLEL ALGORITHM FOR

MATRIX MULTIPLICATION

Presented by: Anuj Shah

Guided by:

Professor Dr. Russ Miller
Dr. Matt Jones

AGENDA
ØProblem Definition

ØApplications of Matrix Multiplication

ØParallel Implementation

ØResults

ØChallenges Faced

ØFuture Work

ØConclusion
2

Problem Definition
• Given a matrix A(n x m) n rows and m columns, where each of its elements is denoted Aij with 1

≤ i ≤ n and 1 ≤ j ≤ m, and a matrix B(m × p) of m rows and p columns, where each of its
elements is denoted Bij with 1 ≤ i ≤ m, and 1 ≤ j ≤ p, the matrix C resulting from the operation of
multiplication of matrices A and B, C = A × B, is such that each of its elements is denoted Cij

with 1 ≤ i ≤ n and 1 ≤ j ≤ p, and is calculated follows

3

4

Matrix C has a total of N2 entries Θ(n2)
Each of them require:
N Multiplications & n-1 Additions Θ(n)

Total time = Θ(n3)

Sequential Algorithm

5

7

Applications of Matrix Multiplication

A few of them are:

ØRecurrence Relations

ØPhysics

ØGraph theory Problems

ØVideo Games

ØRobotics

8

Parallel Implementation
1. Partition these square matrices in p square blocks, where p is the number of processes

available.

2. Create a matrix of processes of size P1/2 x P1/2 so that each process can maintain a block of A
matrix and a block B matrix.

3. Each Process works with it respective sub block.

4. Initial arrangement is done with respect to the PEs such that each sub block of A is shifted to the
left by its row number and each sub block of B is shifted up by its column number.

5. Repeat √p times
1. Perform Matrix Multiplication in each processor and add the result to the previous one.
2. The sub-blocks of A are shifted one step to the left and the sub-blocks of B are shifted one step

up.

9

A00
B00
C00

A11
B10
C10

A01
B11
C01

A12
B21
C11

A00

A21

A10
A20

A11

A01 A02
A12
A22

B00

B21

B10
B20

B11

B01 B02
B12
B22

A02
B22
C02

A10
B02
C012

A22
B20
C20

A20
B01
C21

A21
B12
C22

10

Initial Matrices being divided into 4 blocks and given
to their processes:

A1 A2

A3 A4

A9 A10

A11 A12

A5 A6

A7 A8

A13 A14

A15 A16

B1 B2

B3 B4

B9 B10

B11 B12

B5 B6

B7 B8

B13 B14

B15 B16

11

A1 A2

A3 A4

A5 A6

A7 A8

A9 A10

A11 A12

A13 A14

A15 A16

B1 B2

B3 B4

B9 B10

B11 B12

B5 B6

B7 B8

B13 B14

B15 B16

Initial arrangement & local multiplication:

C1
1 C1

2

C1
3 C1

4

C1
13 C1

14

C1
15 C1

16

C1
9 C1

10

C1
11 C1

12

C1
5 C1

6

C1
7 C1

8

12

A1 A2

A3 A4

A5 A6

A7 A8

A9 A10

A11 A12

A13 A14

A15 A16

B1 B2

B3 B4

B9 B10

B11 B12

B5 B6

B7 B8

B13 B14

B15 B16

Shift A left by one and B up by 1 & local Multiplication

C2
1 C2

2

C2
3 C2

4

C2
13 C2

14

C2
15 C2

16

C2
9 C2

10

C2
11 C2

12

C2
5 C2

6

C2
7 C2

8

13

C1
1 C1

2

C1
3 C1

4

C1
13 C1

14

C1
15 C1

16

C1
9 C1

10

C1
11 C1

12

C1
5 C1

6

C1
7 C1

8

C2
1 C2

2

C2
3 C2

4

C2
13 C2

14

C2
15 C2

16

C2
9 C2

10

C2
11 C2

12

C2
5 C2

6

C2
7 C2

8

P1

P4

P2

P3

Add the partial answers

14

Results
The final testing Parameters were as followed:

ØMatrix dimensions ranged from 1000 to 18000.

ØBoth matrices were square and had the same dimensions.

ØNo. of processors used were 1, 4, 9, 25, 49, 81, 100, 144, 225 & 256.

ØEach run was performed on Processors having 16-core nodes and 128GB
of memory.

15

DATA TIME(S)

1,000 0.518

1,500 1.751

2,000 4.878

3,000 19.497

3,500 27.031

4,000 45.462

4,500 65.480

4,800 76.380

5,000 80.716

5,400 115.722

DATA TIME(S)

6,000 149.274

6,400 181.407

6,500 198.058

7,000 220.718

7,500 304.095

8,000 365.351

8,400 426.185

9,000 469.025

9,600 612.037

10,000 715.185

11,000 943.285

Sequential run

16

17

DATA TIME(S)
1,000 0.189

2,000 1.2082

5,000 21.471

7,000 59.600

Parallel run
No of Processors : 4

DATA TIME(S)
1500 0.241

3000 1.744

5400 12.295

9000 60.977

No of Processors : 9

DATA TIME(S)
4,000 2.15

6,000 6.31

8,000 13.751

10,000 25.9

No of Processors : 25

DATA TIME(S)
3,500 0.783

7,000 11.248

8,400 11.594

14,000 51.61

No of Processors : 49

18

DATA TIME(S)
4,500 0.942

6,300 2.407

7,470 4.66

9,000 9.103

No of Processors : 81

DATA TIME(S)
4,500 0.923

6,500 2.347

7,500 3.559

11,000 13.812

No of Processors : 100

DATA TIME(S)
4,800 0.789

6,000 1.362

8,400 3.605

12,000 12.509

No of Processors : 144

DATA TIME(S)
6,000 1.129

9,000 3.094

10,500 4.691

15,000 16.655

No of Processors : 225

19

DATA TIME(S)
6,400 1.354

9,600 3.531

12,800 7.721

18,000 27.707

No of Processors : 256

20

Number of
Processors Speed Factor

1 1

4 3.72

9 7.34

25 26.51

49 28.53

81 59.61

100 73.20

144 113.26

225 175.18

256 162.44

Speed Up Factor

21

Challenges Faced

ØThe number of processors must be a proper square.

ØThe data should be equally distributed amongst all the processors.

ØThe results of running time varies with the change of processor
specification and their allocation.

22

Future Work

ØCan use files to read and write data.

ØUse of Strassen's algorithm for sequential matrix multiplication.

ØCompare the performance results using OpenMP.

23

Conclusion
ØIt is not always worth taking up the additional cost of extra processors vs

the speed up achieved.

ØThe decision highly depends on the task requirements and incoming
data

ØIncreasing the number of processors doesn’t always speed up the
process.

ØIn my opinion for a matrix of size up to 11k * 11k one should go for 25
Processors (“sweet point”).

24

Questions??

Thank You!

