
Parallel Implementation of 

Bitonic Sort

Presented For CSE633

Instructor: Dr. Russ Miller

Presented By:

Anushree Parmar



Why Bitonic Sort?

• No of comparisons in Bitonic sort are O(n Log 2n)

• No of comparisons done by most of the algorithms like Merge 

Sort or Quick Sort take O(n Logn)

• Bitonic sort is better for parallel implementation



Bitonic Sequence
A sequence numbers is said to be bitonic if and only if

1. Monotonically increases and then monotonically decreases 

2. Monotonically decreases and then monotonically increases

3. Can be split into two parts that can be interchanged to give 

either of the first two cases.



Rearrange to a bitonic sequence



No of comparison 

levels
1 2 3



No of comparison 

levels
4



Algorithm

BitonicSort(a, low,high,direiction): 

if high> 1: 

k = high/2

BitonicSort(a, low, k, 1) 

BitonicSort(a, low+k, k, 0) 

BitonicMerge(a, low, high, direction)

BitonicMerge(a, low,high, direction): 

if high > 1: 

k = high/2

for i in range(low , low+k):

// Based on direction swap the data

a[i],a[i+k] = a[i+k],a[i]

BitonicMerge(a, low, k, direction) 

BitonicMerge(a, low+k, k, direction)



Parallel Execution



Parallel Algorithm Implementation

• Generate the data randomly

• N – Amount of data in each processor 

• n – No. of processors

• Sequentially sort data in each processor using sorting algorithms 

like Merge Sort 

• Compare the sorted sequences from each processor the way 

compared in Bitonic Sort

• Recursively repeat the same process 

• Time Complexity - O(N Log N) + O(N Log 2n)





Results



1 Million Data per processor

Time Complexity - O(N Log N) + O(N Log 2n)

No. of 
Processors

Data Time

2 2000000 0.351248

4 4000000 0.573388

8 8000000 0.888249

16 16000000 1.299627

32 32000000 2.144949

64 64000000 2.991943

128 128000000 3.853609



Constant Data Size – 10,000 Data 

No. of Processors Time(s)

2 0.002375

4 0.001864

8 0.001466

16 0.001323

32 0.001307

64 0.001269

128 0.001633



Constant Data Size – 1 Million Data 

No. of Processors Time(s)

2 0.212092

4 0.1446

8 0.095244

16 0.069043

32 0.053

64 0.041478

128 0.040321



Constant Data Size – 10 Million Data 

No. of Processors Time(s)

2 2.029992

4 1.468713

8 1.024255

16 0.80198

32 0.621896

64 0.418867

128 0.262654



Constant Data Size – 100 Million Data 

No. of Processors Time(s)

2 23.49861

4 18.99897

8 14.87071

16 10.65893

32 6.959202

64 4.742998

128 2.910114



Observations

• When data is kept constant per processor, time increases with a 

factor of Log 2n.

• Increasing the number of processors, increases the 

communication overheard which outweighs the benefit of 

reducing computation per processor.

• For input size used, using more than 16 or 32 processors is not 

practical. 



References

• Algorithms Sequential and Parallel: A Unified Approach by Russ 

Miller and Laurence Boxer

• http://www.cs.utah.edu/~hari/teaching/paralg/slides/lec06.html#/3

/13

• https://www.geeksforgeeks.org/bitonic-sort/

• https://en.wikipedia.org/wiki/Bitonic_sorter

• https://ubccr.freshdesk.com/support/solutions/articles/130000262

45-tutorials-and-training-documents

http://www.cs.utah.edu/~hari/teaching/paralg/slides/lec06.html#/3/13
https://www.geeksforgeeks.org/bitonic-sort/
https://en.wikipedia.org/wiki/Bitonic_sorter
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-documents


Thank You.


