
1

Parallel BFS 1D Partitioning

CSE 633 - Parallel Algorithm

Under guidance of Dr. Russ Miller

Submitted by – Arshabh Semwal

UB Person Number - 50419031

2

Motivations

Graph processing operates on a large volume of highly connected data.

Real-world applications of graph processing includes:

• Social network

• Digital maps

• Webpage hyperlinks

• Very Large-Scale Integration (VLSI) layout of integrated circuit (IC) and

more

3

Applications of BFS

Finding Shortest Path: In an unweighted graph, the shortest path is the path with least

number of edges. With Breadth First, we always reach a vertex from given source using

the minimum number of edges.

Finding Minimum Spanning Tree for unweighted graph In an unweighted graph, in case

of unweighted graphs, any spanning tree is Minimum Spanning Tree, and we can use

either Depth or Breadth first traversal for finding a spanning tree.

4

Applications of BFS

Peer to Peer Networks: In Peer-to-Peer Networks like BitTorrent, Breadth First Search

is used to find all neighbor nodes.

Social Networking Websites: In social networks, we can find people within a given

distance ‘k’ from a person using Breadth First Search till ‘k’ levels.

GPS Navigation systems: Breadth First Search is used to find all neighboring

locations.

Broadcasting in Network: In networks, a broadcasted packet follows Breadth First

Search to reach all nodes.

5

Sequential BFS

BredthFirstSerach(G, A): //G is graph and A is source node

1. Let Q be the queue

2. Q.enqueue(A)

3. Mark A node as visited.

4. While (Q is not empty)

5. B = Q.dequeue()

6. Processing all the neighbors of B

7. For all neighbors C of B

8. If C is not visited, Q. enqueue(C)

9. Mark C a visited

6

Parallel BFS 1-D Partition

The main steps of BFS traversal in the following algorithm are:

• Construct the frontier with vertexes from local storage.

• Terminate the traversal if frontier from all processors are empty.

• Construct the next frontier based on the neighbor's vertex of its frontier, although some of

their neighbors may be stored in other processors.

• Run an all-to-all communication to let each processor know, which local vertexes should be

put into its local next-frontier.

• Receive messages from all other processors, update the distance value of their local

vertexes in the current frontier, change its next-frontier to next-frontier.

7
Image Source Wikipedia: https://en.wikipedia.org/wiki/Parallel_breadth-first_search

1-D Partition Parallel BFS Algorithm

8

1-D Partition of Data

9

Working of Algorithm

The algorithm is like sequential BFS but is adapted to send and receive neighbors' data from other processors.

10

Data Used

Two data are used:

1. SNAP California road graph:

Dataset statistics

• Vertices - 1971281

• Edges - 2766607

• Diameter (longest shortest path) – 849

2. The Network Data Repository with Interactive Graph Analytics and Visualization (Road

Network):

Dataset statistics

• Vertices – 23.9 M

• Edges – 28.9 M

• Density - 1.0063e-07

11

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140

R
u

n
ti

m
e

 in
 s

e
co

n
d

s

Number of Processors

Runtime as a Function of Processors on 2M vertices dataset

12

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140

Number of Processors

Runtime vs Speedup as a function of processors (2M vertices dataset)

Runtime Speedup

13

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128

Number of Processors

Runtime Vs Speedup on 23 million nodes dataset

Runtime Speedup

14

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

R
u

n
ti

m
e

 i
n

 s
e

c
o

n
d

s

Number of processors

Runtime as a function of processors on 23 M dataset

15

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

NUMBER OF PROCESSORS

Runtime vs speedup on 23 million vertex dataset

runtime speed up

16

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64 70 80 128 256

Number of Processors

Runtime Vs Speedup on 23 million nodes dataset

runtime speed up

17

Results:

1. For 2M vertex dataset the algorithm run optimally till 32 processors after which the time

consumed during inter-processor communication exceeded the speedup gained by parallel

computation.

2. For 23M vertex dataset the algorithm gained speedup till 70 processors after which the time

consumed during inter-processor communication exceeded the speedup gained by parallel

computation.

3. It is observed that the data used is very sparsely populated which is contributing negatively

to the performance of algorithm. It is assumed that a densely populated graph will perform

better and might gain speed up beyond the current processor threshold as a densely

populated graph will require more computation than a sparsely populated graph.

18

References

1. Snap California Road Dataset. J. Leskovec, K. Lang, A. Dasgupta, M.

Mahoney. Community Structure in Large Networks: Natural Cluster Sizes and the

Absence of Large Well-Defined Clusters. Internet Mathematics 6(1) 29--123, 2009.

https://snap.stanford.edu/data/roadNet-CA.html

2. Parallel BFS 1-D Partition - https://en.wikipedia.org/wiki/Parallel_breadth-

first_search

3. The Network Data Repository with Interactive Graph Analytics and Visualization-

road dataset by Ryan A. Rossi and Nesreen K. Ahmed.

https://networkrepository.com/road-road-usa.php

http://arxiv.org/abs/0810.1355
https://snap.stanford.edu/data/roadNet-CA.html
https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://networkrepository.com/road-road-usa.php

