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Agenda

• Overview	of	the	project
• Proposed	algorithm	with	justification
• Architecture	of	the	solution
• Experimentation	in	CCR
• Obtained	results	and	analysis
• Challenges
• Learnings
• Conclusion	and	Future	Work
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Overview	of	the	project
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Think	of	bubble	sort….
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• Unrealistic	to	parallelize
• Inherently	sequential	nature	of	the	sort	algorithms

• Why	Odd-Even	Transposition	sort?
• Bigger	opportunity	to	parallelize
• Key	idea	 is	to	decouple	 the	compare	swaps
• Consists	 of	two	different	phases	of	sequence
• For	example:	 During	even	phases,	compare	swaps	are	executed	 on	the	even	
pairs	and	vice	versa.



Goal	of	the	project

• Design,	implementation,	and	analyze	parallel	solution	of	interest	on	
modern	large-scale	multiprocessor/multi-core	systems.	[1]

• Acclimatization	to	real	life	high	performance	multiprocessor	
computing	environment	and	obtaining	knowledge	on	how	to	use	
them.

• Use	Foster’s	method	[2]
• Use	Amdahl’s	law	for	calculation	of	speedup	[2]
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Ian	Foster’s	method
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Pictorial	depiction	of	odd-even	sort	
mechanism
• Even	positions

• Odd	positions
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Architecture	of	Odd-Even
Transposition	sort
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Experimentation

• Involved	allocation	of	resources	followed	by	execution	of	code	to	
collect	run-time

• Used	script	file
• Specified	number	of	servers
• Specified	number	of	CPUs
• Specified	number	of	tasks	per	process
• Obtained	–exclusive	access	to	the	resources
• Calculated	speedup	values	using	Amdahl’s	law
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Script	for	running	SLURM	jobs
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!/bin/sh
SBATCH	--salloc
SBATCH	--partition=general-compute	--qos=general-compute	
SBATCH	--time=1:00:00	
SBATCH	--nodes=16	
SBATCH	--ntasks-per-node=1	
SBATCH	--constraint=IB	
SBATCH	--job-name=	"Odd_Even"	
SBATCH	--mail-user=asifimra@buffalo.edu
SBATCH	--mail-type=ALL	
SBATCH	–requeue
#	The	initial	srun will	trigger	the	SLURM	prologue	on	the	compute	nodes.	
I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so srun
mpirun –np	16	./oddeven2	
echo	"All	Done!"



Server	Configuration	 [4]

Compute 372 12 2.40GHz 48GB Infiniband
(QL)

IB CPU-
E5645
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Key	size:	1000000	 (1	million)
Processors Speedup
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Key	size:	200000	 (2	
million)

Processors Speedup
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Speedup	
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Speedup	[cont]
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Speedup

• Amdahl’s	law
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SLURM	Job	details	for	CPU	=	2	
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Challenges

• Long	time	to	provision	64,	126	and	256	cores
• Unexpected	service	unavailability	due	to	emergency.

20



Learning	from	the	course

• Viewed	the	difference	in	run	time	as	cores	are	increased
• Noticed	how	high	performance	computing	systems	and	parallelization	
can	speed	up	performance	compared	to	sequential	runs.

• Knowledge	on	MPI,	Intel	MPI	and	Open	MPI	systems
• Visit	and	seeing	CCR	infrastructure
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Conclusion	and	future	goals

• Results	show	that	there	should	be	an	optimum	number	of	CPU’s	
which	need	to	be	allocated	for	the	data	load

• Each	physical	server	initiated	1	process	only

• Future	Goal:
• Extend	this	code	to	OpenMP and	compare	performance	 in	CSE	702
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Thank	you
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