
Parallel	Odd-Even	Transposition	Sort	
using	MPI

CSE	633:	Parallel	Algorithms
Course	Instructor:	Dr.	Russ	Miller	

UB	Distinguished	Professor
Department	of	Computer	Science	&	Engineering

State	University	of	New	York	at	Buffalo

Prepared	by:	Asif	Imran	(UB	Person	number:	50249959)

Agenda

• Overview	of	the	project
• Proposed	algorithm	with	justification
• Architecture	of	the	solution
• Experimentation	in	CCR
• Obtained	results	and	analysis
• Challenges
• Learnings
• Conclusion	and	Future	Work

2

Overview	of	the	project

3

Think	of	bubble	sort….

4

• Unrealistic	to	parallelize
• Inherently	sequential	nature	of	the	sort	algorithms

• Why	Odd-Even	Transposition	sort?
• Bigger	opportunity	to	parallelize
• Key	idea	 is	to	decouple	 the	compare	swaps
• Consists	 of	two	different	phases	of	sequence
• For	example:	 During	even	phases,	compare	swaps	are	executed	 on	the	even	
pairs	and	vice	versa.

Goal	of	the	project

• Design,	implementation,	and	analyze	parallel	solution	of	interest	on	
modern	large-scale	multiprocessor/multi-core	systems.	[1]

• Acclimatization	to	real	life	high	performance	multiprocessor	
computing	environment	and	obtaining	knowledge	on	how	to	use	
them.

• Use	Foster’s	method	[2]
• Use	Amdahl’s	law	for	calculation	of	speedup	[2]

5

Ian	Foster’s	method

6

Start
Obtain	 large	task

A

B

C

A’

B’

C’

Output	 final	 result

S-1

S-2

S-3

S-4

Pictorial	depiction	of	odd-even	sort	
mechanism
• Even	positions

• Odd	positions

7

Architecture	of	Odd-Even
Transposition	sort

8

Experimentation

• Involved	allocation	of	resources	followed	by	execution	of	code	to	
collect	run-time

• Used	script	file
• Specified	number	of	servers
• Specified	number	of	CPUs
• Specified	number	of	tasks	per	process
• Obtained	–exclusive	access	to	the	resources
• Calculated	speedup	values	using	Amdahl’s	law

9

Script	for	running	SLURM	jobs

10

!/bin/sh
SBATCH	--salloc
SBATCH	--partition=general-compute	--qos=general-compute	
SBATCH	--time=1:00:00	
SBATCH	--nodes=16	
SBATCH	--ntasks-per-node=1	
SBATCH	--constraint=IB	
SBATCH	--job-name=	"Odd_Even"	
SBATCH	--mail-user=asifimra@buffalo.edu
SBATCH	--mail-type=ALL	
SBATCH	–requeue
#	The	initial	srun will	trigger	the	SLURM	prologue	on	the	compute	nodes.	
I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so srun
mpirun –np	16	./oddeven2	
echo	"All	Done!"

Server	Configuration	 [4]

Compute 372 12 2.40GHz 48GB Infiniband
(QL)

IB CPU-
E5645

11

Type of
Node

Approximate
of Nodes

Cores per
Node

Clock
Rate RAM Network* SLURM

TAGS

12

0.02555
0.02442

0.02172

0.01381

0.01655

0.0264

0

0.005

0.01

0.015

0.02

0.025

0.03

0 10 20 30 40 50 60 70

Ti
m
e	
(s)

Nodes

Key	size	100000	(One	hundred	thousand)

Key	size:	100000

Processors Time

2 0.02555

4 0.02442

8 0.02172

16 0.01381

32 0.01655

64 0.0264

13

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300

Ti
m
e

Nodes

Key	size:	200000	(Two	hundred	thousand)Key	size:	200000
Processors Time

2 1.896
4 1.6833
8 1.2287
16 1.1688
32 0.934
64 1.07
128 1.311
256 1.610

14

Key	size:	1000000	 (1	million)
Processors Speedup

2 30.609
4 19.447
8 10.799
16 4.649
32 2.873
64 1.329
128 0.901

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

Ru
n	
tim

e

Nodes

Key	size:	1000000	(1	million)

15

Key	size:	200000	 (2	
million)

Processors Speedup
2 48.905
4 17.312
8 12.688
16 8.491
32 4.142
64 1.464
128 0.996

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

Ti
m
e

Nodes

Key	size:	2000000	(two	million)

Speedup	

16

4.618395303
4.832104832

5.432780847

8.544532947

7.129909366

4.46969697

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64

SP
EE
DU

P

PROCESSOR

SpeedupKey	size:	100000
Processors Speedup

2 4.618395303
4 4.832104832
8 5.432780847
16 8.544532947
32 7.129909366
64 4.46969697

Speedup	[cont]

17

3.372
3.798

5.203
5.47

6.845

2 4 8 16 32

Sp
ee

du
p

Processors

Speedup
Key	size:	200000

Processors Speedup

2 3.372

4 3.798

8 5.203

16 5.47

32 6.845

Speedup

• Amdahl’s	law

18

SLURM	Job	details	for	CPU	=	2	

19

Challenges

• Long	time	to	provision	64,	126	and	256	cores
• Unexpected	service	unavailability	due	to	emergency.

20

Learning	from	the	course

• Viewed	the	difference	in	run	time	as	cores	are	increased
• Noticed	how	high	performance	computing	systems	and	parallelization	
can	speed	up	performance	compared	to	sequential	runs.

• Knowledge	on	MPI,	Intel	MPI	and	Open	MPI	systems
• Visit	and	seeing	CCR	infrastructure

21

Conclusion	and	future	goals

• Results	show	that	there	should	be	an	optimum	number	of	CPU’s	
which	need	to	be	allocated	for	the	data	load

• Each	physical	server	initiated	1	process	only

• Future	Goal:
• Extend	this	code	to	OpenMP and	compare	performance	 in	CSE	702

22

References

[1]	https://www.cse.buffalo.edu//faculty/miller/teaching.shtml

[2]	Pacheco,	P.S.,	1997.Parallel	programming	with	MPI.	Morgan	Kaufmann.

[3]	Foster,	I.,	Zhao,	Y.,	Raicu,	I.	and	Lu,	S.,	2008,	November.	Cloud	computing	
and	grid	computing	360-degree	compared.	In Grid	Computing	Environments	
Workshop,	2008.	GCE'08(pp.	1-10).	IEEE.

[4]	Academic	Compute	Cluster	(UB-HPC).	 Link:	
https://www.buffalo.edu/ccr/support/research_facilities/general_compute.h
tml

23

Thank	you

24

