
‘-

1

PARALLEL

IMPLEMENTATION OF

FLOYD-WARSHALL

ALGORITHM

Guided by: Dr. Russ Miller (UB Distinguished Professor)
CSE 633: Parallel Algorithms
Presented By: Asmita Gautam

‘-

2

OVERVIEW:

1. Problem Statement

2. Serial Execution

3. Parallelization and Communication

4. Implementation and Parallel Algorithm

5. Performance and Speedup

6. Challenges

7. References

‘-

3

Perform the parallel implementation of the Floyd-Warshall algorithm.

Floyd-Warshall Algorithm:

• It is an all pair shortest path algorithm for a directed and weighted graph.

• It basically tries to find the minimum distance between any pair of vertices in the graph.

• In this we consider every vertex as an intermediate vertex ‘k’ and find if the distance between i,j through

k is smaller than the existing distance.

i.e. dist(i,j) = min(dist(i,j) , dist(i,k) + dist(k,j))

Problem Statement

0 1 2 3

0

1

2

3

‘-

4

• Since the distance from a vertex to itself is going to be 0 , hence all the diagonals are set to 0 in the matrix.

• Sequential Algorithm: 0 1 2 3

0

1

2

3

Serial Execution

‘-

5

• We see that the task responsible for updating A[i, j] needs the values of A[i, k] and A[k, j]

• For k=1

• the task responsible for A[0, 2] needs access to A[0, 1] and A[1, 2]

• the task responsible for A[1, 2] needs access to A[1, 1] and A[1, 2]

• the task responsible for A[2, 2] needs access to A[2, 1] and A[1, 2]

• the task responsible for A[3, 2] needs access to A[3, 1] and A[1, 2]

• That means for a particular k, j, A[k][j] is needed by all the column elements of j.

• Similarly,

• the task responsible for A[0, 0] needs access to A[0, 1] and A[1, 0]

• the task responsible for A[0, 1] needs access to A[0, 1] and A[1, 1]

• the task responsible for A[0, 2] needs access to A[0, 1] and A[1, 2]

• the task responsible for A[0, 3] needs access to A[0, 1] and A[1, 3];

Parallelism.. But How?

‘-

6

• During iteration k of the outer loop, each element of row k of A must be broadcast to every task in the same

column as that element.

• Every element of column k of A must be broadcast to every task in the same row as that element.

• A broadcast is a global communication operation in which a single task sends a message to all processes in its

communication group.

Here for K = 1

1st column elements would do a

respective row broadcast

And 1st row elements would do a

respective column broadcast.

Communication:

‘-

7

Implementation:

• Partitioned the matrix data using 2-D block mapping.

• The entire n x n matrix data is divided into squares of the same size and each

square is assigned to a processor.

• For n x n matrix and p processors each process calculates a n/√p x n/√p part of

the distance matrix.

4
n = 4

n x n = 16 data elements

No of processors = 4

n2 elements are distributed amongst p

processors = n2 /p = n/√p x n/√p

Critical condition for equal distribution of data:

n%√p = 0

P0

P2 P3

P1

4

‘-

8

Note: neque digni

and in aliquet nisl

et a umis varius.

Parallel Pseudocode:

P0

P2 P3

P1

1 2 3 4

1

2

3

4

‘-

9

Performance:
Data Size : 1 million (1000 x 1000)

Nodes Time (in secs)

4 6.587

16 1.646

25 1.075

64 0.519

100 0.3753

‘-

10

Performance:
Data Size : 4 million (2000 x 2000)

Nodes Time (in secs)

4 58.654

16 14.452

25 9.332

64 3.627

100 2.35

256 2.01

‘-

11

Performance:
Data Size : 9 million (3000 x 3000)

Nodes Time (in secs)

4 272.234

16 85.372

36 23.724

64 13.202

100 8.483

225 3.902

‘-

12

SpeedUp:

Data Size : 1 million (1000 x 1000)

Serial Execution Time: 12 seconds

Nodes Speed-Up

4 1.821

16 7.29

25 11.162

64 21.089

100 33.99

‘-

13

SpeedUp:

Data Size : 4 million (2000 x 2000)

Serial Execution Time: 139 seconds

Nodes Speed-Up

4 2.369

16 9.61

25 14.89

64 38.3

100 59.14

256 67.05

‘-

14

Speed-Up:

Data Size : 9 million (3000 x 3000)

Serial Execution Time: 567 seconds

Nodes Speed-Up

4 2.082

16 6.641

36 23.899

64 42.94

100 66.839

225 145.3

‘-

15

Challenges:

• Distributing data amongst processors in a 2-D block fashion.

• Communication between respective row and column processors.

• Waiting time for running on 256 (or ~256) nodes.

‘-

16

References:

• https://en.wikipedia.org/wiki/Parallel_all-pairs_shortest_path_algorithm#Parallelization

• http://parallelcomp.uw.hu/ch10lev1sec4.html

• CCR Tutorials and handouts https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-

workshops-and-training-documents

https://en.wikipedia.org/wiki/Parallel_all-pairs_shortest_path_algorithm#Parallelization
http://parallelcomp.uw.hu/ch10lev1sec4.html
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-workshops-and-training-documents

‘-

17

MPI_Bcast(“ANY QUESTIONS ???”)

