Matrix Multiplication

On CCR Cluster

CSE 633 Parallel Algorithms

Spring 2014

Praveen Kumar Bellam

Outline

- Sequential Algorithm
- Parallel Algorithm
- Parallel Implementation Using MPI
- Parallel Implementation Using Open MP
- Results

Input: Two square matrices A, B of size $n \times n$

Output: The matrix product $C_{n \times n} = A \times B$

Matrix Multiplication (A, B)

```
for i=1 to n do c_{ij}=1 to n do c_{ij}=0 for k=1 to n do O(n^3) c_{ij}=c_{ij}+a_{ik}b_{kj} end for end for end for
```

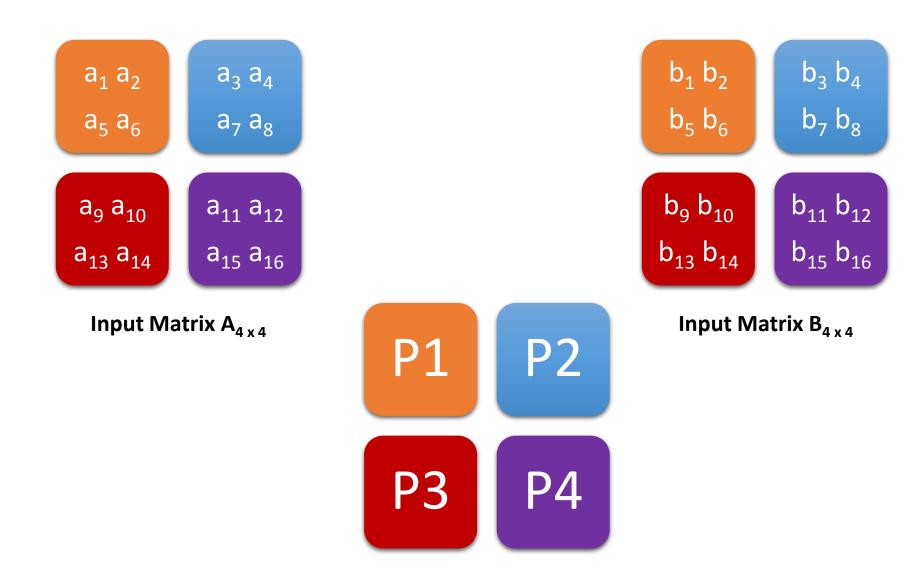
Parallel Algorithm – Design Considerations

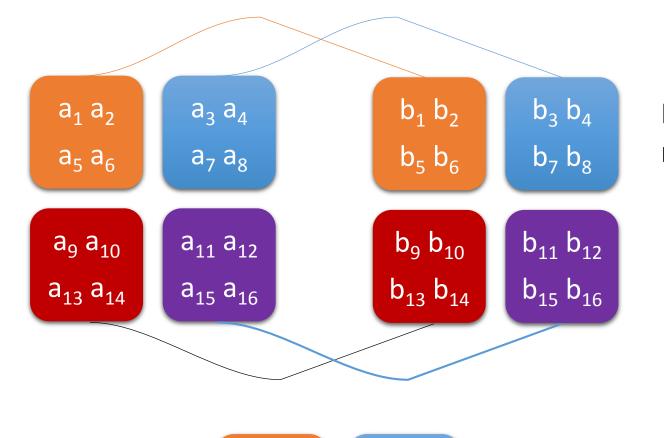
- Distributing the data
- Local computation
- Communicating the data (Send/Receiving)
- Gathering the results

Parallel Algorithm

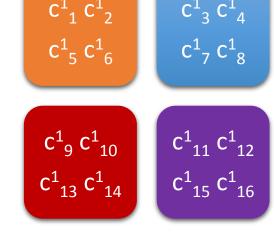
- Divide the input matrices into P blocks. P is the number of processors available for computation.
- 2. Create a matrix of processes of size $P^{1/2}$ x $P^{1/2}$ so that each process can maintain a block of A matrix and a block B matrix.
- 3. Each block is sent to each process by determining the owner, and the copied sub blocks are multiplied together and the results added to the partial results in the C sub-blocks.
- 4. The A sub-blocks are rolled one step to the left and the B sub-blocks are rolled one step upwards.
- 5. Repeat the process, $P^{1/2}$ times.

Divide input matrices into P sub blocks, and distribute the data





Each processor, performs local matrix multiplication of blocks.



Output Matrix C_{4 X 4}

 $a_9 a_{10}$ $a_{11} a_{12}$ $a_{13} a_{14}$ $a_{15} a_{16}$

 $b_1 b_2$ $b_5 b_6$

 $b_3 b_4$

 $b_7 b_8$

Each processor, sends A's sub block to the processor on the left, B's sub block to the processor above.

P1 P2

P3 P4

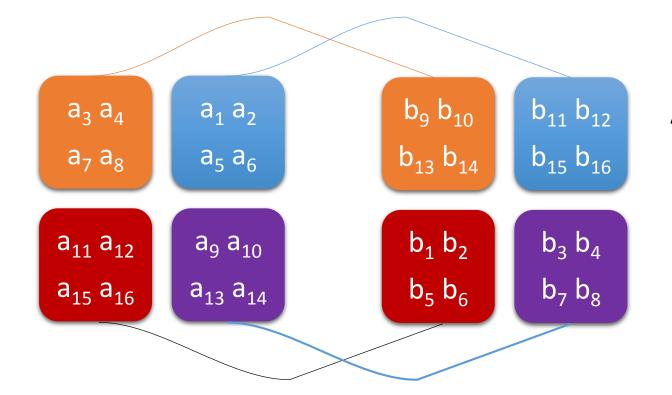
 $c_{1}^{1} c_{2}^{1}$ $c_{5}^{1} c_{6}^{1}$

 $c_{3}^{1} c_{4}^{1}$ $c_{7}^{1} c_{8}^{1}$

 $c^{1}_{9} c^{1}_{10}$ $c^{1}_{13} c^{1}_{14}$

 $c_{11}^{1} c_{12}^{1}$ $c_{15}^{1} c_{16}^{1}$

Output Matrix C_{4 X 4}



Again, perform local matrix multiplication and add it to the result set.

P1 P2
P3 P4

 $C_{1}^{1}+C_{1}^{2}$ $C_{2}^{1}+C_{2}^{2}$ $C_{5}^{1}+C_{6}^{2}$ $C_{6}^{1}+C_{6}^{2}$

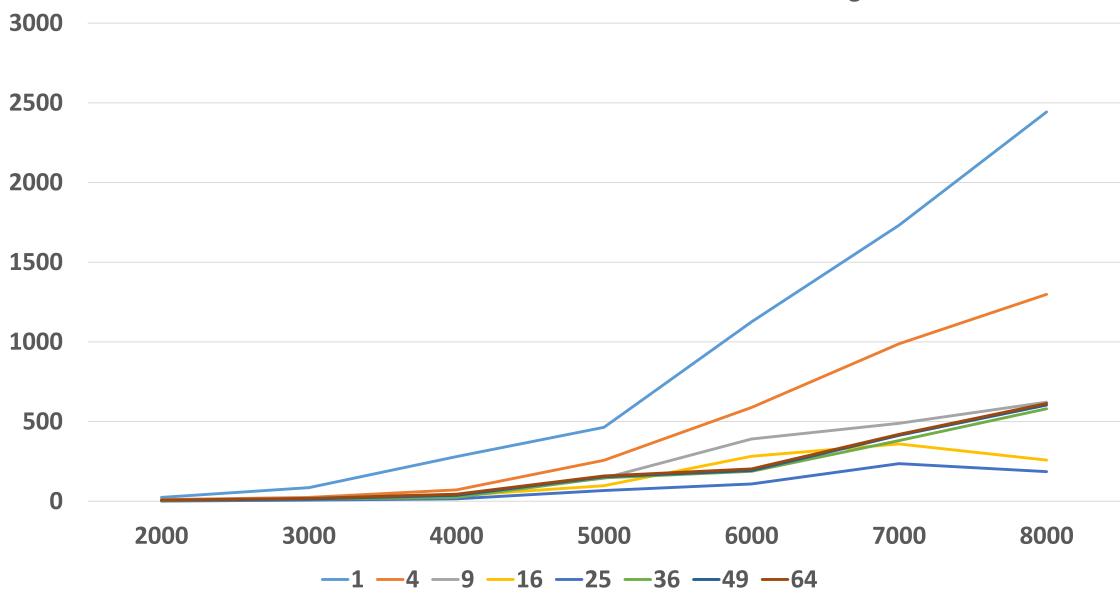
C¹₃+C²₃ C¹₄+C²₄ C¹₇+C²₇ C¹₈+C²₈

 $C_{9}^{1}+C_{9}^{2}$ $C_{10}^{1}+C_{10}^{2}$ $C_{13}^{1}+C_{13}^{2}$ $C_{14}^{1}+C_{14}^{2}$

 $C_{11}^1 + C_{11}^2$ $C_{12}^1 + C_{12}^2$ $C_{15}^1 + C_{15}^2$ $C_{16}^1 + C_{16}^2$

MPI Results

	2000	3000	4000	5000	6000	7000	8000
1	24	85	280	464	1125	1732	2443
4	9.43	23.70	70.90	256.62	588.38	988.20	1297.69
9	6.85	20.50	42.56	144.59	390.40	488.72	620.96
16	5.20	15.10	35.16	97.14	281.76	359.46	257.72
25	1.33	6.80	14.79	67.08	107.91	235.77	186.07
36	4.20	12.70	24.01	146.51	187.40	380.78	580.31
49	5.72	13.78	36.78	153.08	192.66	413.12	603.64
64	6.80	18.30	44.43	158.65	202.74	419.35	613.37



		Matrix Size —		OpenMP Results		
	2000	3000	4000	5000	6000	
1	24	85	280	464	1125	
2	11.36	44.35	132.12	267.05	403.06	
4	8.23	31.66	99.08	206.26	362.38	
6	6.57	23.43	71.32	139.01	253.85	
8	4.44	15.66	57.31	115.05	204.02	
10	3.26	9.30	45.54	88.13	162.54	
12	2.44	7.30	37.75	86.69	127.68	
14	2.37	6.02	25.47	52.52	109.34	

Observations & Learnings

- Increasing the processors doesn't always reduce the running time.
- Need to experimentally identify the point where communication costs are taking over the local computation.
- Running times depend on how the nodes got allocated on CCR cluster.
- Need to specify in the SLURM Script about the node details.
- Got good understanding about parallelization.
- Next step is to analyze and understand the semantics of parallel architectures practically by simulating the algorithms.

References

 Gupta, Anshul; Kumar, Vipin; , "Scalability of Parallel Algorithms for Matrix Multiplication," *Parallel Processing*, 1993. ICPP 1993. International Conference on , vol.3, no., pp.115-123, 16-20 Aug. 1993 doi: 10.1109/ICPP.1993.160 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4134256 &isnumber=4134231