
CSE 633: Parallel Algorithms

Parallelized Hash Collision
Attacking

Benedikt Budig

Course Instructor:
Russ Miller

Fall 2012

The Topic in a Nutshell

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

that is, if h maps the two strings to the same hash value.

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

that is, if h maps the two strings to the same hash value.

find a string y such that h(y) collides with given h(x)

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

that is, if h maps the two strings to the same hash value.

find a string y such that h(y) collides with given h(x)

Reason to do that?

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

that is, if h maps the two strings to the same hash value.

find a string y such that h(y) collides with given h(x)

Reason to do that: Cryptographic Applications

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

that is, if h maps the two strings to the same hash value.

find a string y such that h(y) collides with given h(x)

Reason to do that: Cryptographic Applications

• secure storage of passwords

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

that is, if h maps the two strings to the same hash value.

find a string y such that h(y) collides with given h(x)

Reason to do that: Cryptographic Applications

• secure storage of passwords

• digital signature schemes

image source: shutterstock

The Topic in a Nutshell

A hash function is a total function h : {0, 1}∗ → {0, 1}n

that maps arbitrarily long strings to strings of a fixed length n.

Project Goal: Find Hash Collisions for given Hash

A hash collision occurs for two strings x, y if h(x) = h(y),

that is, if h maps the two strings to the same hash value.

find a string y such that h(y) collides with given h(x)

Reason to do that: Cryptographic Applications

• secure storage of passwords

• digital signature schemes MD5

We focus on

image source: shutterstock

Parallel Approach

Parallel Approach

Input:

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output:

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

set of possible strings

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

2. each process calculates hashes
of the strings assigned to it

md5() md5()md5()md5() md5() md5()

set of possible strings

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

2. each process calculates hashes
of the strings assigned to it

3. as soon as one process calculates
a hash equal to the input hash, all processes terminate

md5() md5()md5()md5() md5() md5()

!

set of possible strings

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

2. each process calculates hashes
of the strings assigned to it

3. as soon as one process calculates
a hash equal to the input hash, all processes terminate

md5() md5()md5()md5() md5() md5()

!

set of possible strings

Parallel Approach

Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

2. each process calculates hashes
of the strings assigned to it

3. as soon as one process calculates
a hash equal to the input hash, all processes terminate

4. return the colliding string

md5() md5()md5()md5() md5() md5()

!

set of possible strings

Technical Realization

Technical Realization

Hardware

image source: CCR website

Technical Realization

Hardware

• use of CPUs

image source: CCR website

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

image source: CCR website

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

• tests on CCR machines with 12 cores and 32 cores

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Software and Implementation

• tests on CCR machines with 12 cores and 32 cores

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Software and Implementation

• implementation using the C++
programming language

• tests on CCR machines with 12 cores and 32 cores

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Software and Implementation

• implementation using the C++
programming language

• one implementation using OpenMP

• tests on CCR machines with 12 cores and 32 cores

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Software and Implementation

• implementation using the C++
programming language

• one implementation using OpenMP

• and another version using MPI

• tests on CCR machines with 12 cores and 32 cores

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Software and Implementation

• implementation using the C++
programming language

• one implementation using OpenMP

Future Work

• and another version using MPI

• tests on CCR machines with 12 cores and 32 cores

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Software and Implementation

• implementation using the C++
programming language

• one implementation using OpenMP

Future Work
• tweaks for MPI

and OpenMPI

• and another version using MPI

• tests on CCR machines with 12 cores and 32 cores

Technical Realization

Hardware

• use of CPUs

• use of a multi-core system

• Infiniband network image source: CCR website

Software and Implementation

• implementation using the C++
programming language

• one implementation using OpenMP

Future Work
• tweaks for MPI

and OpenMPI

• implementation
using CUDA• and another version using MPI

• tests on CCR machines with 12 cores and 32 cores

Benchmarks

image source: autoanything

Benchmarks

First Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

First Test: OpenMP on 12 Core System

• 12 Intel Xeon E5645 at 2.40GHz

image source: autoanything

Benchmarks

First Test: OpenMP on 12 Core System

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

image source: autoanything

Benchmarks

First Test: OpenMP on 12 Core System

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

image source: autoanything

Benchmarks

First Test: OpenMP on 12 Core System

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

• 1.43 seconds to find collision

image source: autoanything

Benchmarks

First Test: OpenMP on 12 Core System

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

• 1.43 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

Benchmarks

First Test: OpenMP on 12 Core System

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

linear speedup
• 1.43 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

Benchmarks

image source: autoanything

Benchmarks

Second Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

• 12 Intel Xeon E5645 at 2.40GHz

Second Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

Second Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

Second Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

• 335.18 seconds to find collision

Second Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

• 335.18 seconds to find collision

• approx. 1 billion strings tried

Second Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

• 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

linear speedup
• 335.18 seconds to find collision

• approx. 1 billion strings tried

Second Test: OpenMP on 12 Core System

image source: autoanything

Benchmarks

image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

• 32 Intel Xeon E7-4830 at 2.13GHz

image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

• 32 Intel Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

• 32 Intel Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

• 32 Intel Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

• 152.74 seconds to find collision

image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

• 32 Intel Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

• 152.74 seconds to find collision

• approx. 1 billion strings tried
image source: autoanything

Benchmarks

Third Test: OpenMP on 32 Core System

• 32 Intel Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

linear speedup
• 152.74 seconds to find collision

• approx. 1 billion strings tried
image source: autoanything

Benchmarks

image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

• 0.93 seconds to find collision

image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

• 0.93 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

speed drop• 0.93 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

speed drop• 0.93 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

deployment of additional nodes

Benchmarks

Fourth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}24

speed drop• 0.93 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

deployment of additional nodes

• small problem size
• setup overhead

due to

Benchmarks

image source: autoanything

Benchmarks

Fifth Test: MPI on 6 · 12 Core Systems

image source: autoanything

Benchmarks

Fifth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

image source: autoanything

Benchmarks

Fifth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

image source: autoanything

Benchmarks

Fifth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

image source: autoanything

Benchmarks

Fifth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

• 67.54 seconds to find collision

image source: autoanything

Benchmarks

Fifth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

• 67.54 seconds to find collision

• approx. 1 billion strings tried
image source: autoanything

Benchmarks

Fifth Test: MPI on 6 · 12 Core Systems

• 6 hosts with 12 Intel Xeon E5645 at 2.40GHz

• input: md5(x) with x ∈ {0, 1}32

linear speedup
• 67.54 seconds to find collision

• approx. 1 billion strings tried
image source: autoanything

Benchmarks

image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}24

image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}24

image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}24

• 0.96 seconds to find collision

image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}24

• 0.96 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}24

• 0.96 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

speed drop

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}24

• 0.96 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

speed drop

deployment of additional node

due to

Benchmarks

Sixth Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}24

• 0.96 seconds to find collision

• approx. 4 million strings tried
image source: autoanything

speed drop

deployment of additional node

• small problem size
• setup overhead

due to

Benchmarks

image source: autoanything

Benchmarks

Seventh Test: MPI on 2 · 32 Core Systems

image source: autoanything

Benchmarks

Seventh Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

image source: autoanything

Benchmarks

Seventh Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

image source: autoanything

Benchmarks

Seventh Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

image source: autoanything

Benchmarks

Seventh Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

• 97.30 seconds to find collision

image source: autoanything

Benchmarks

Seventh Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

• 97.30 seconds to find collision

• approx. 1 billion strings tried
image source: autoanything

Benchmarks

Seventh Test: MPI on 2 · 32 Core Systems

• 2 hosts with 32 Xeon E7-4830 at 2.13GHz

• input: md5(x) with x ∈ {0, 1}32

linear speedup
• 97.30 seconds to find collision

• approx. 1 billion strings tried
image source: autoanything

Explanations and Expectations

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

compare

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

compare x ∈ {0, 1}32

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

compare x ∈ {0, 1}32

MPI

OpenMP

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

compare x ∈ {0, 1}32

MPI

OpenMP

32# PEs

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

compare x ∈ {0, 1}32

MPI

OpenMP

32# PEs

152s

174s

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

compare x ∈ {0, 1}32

MPI

OpenMP

32# PEs

152s

174s

64

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

compare x ∈ {0, 1}32

MPI

OpenMP

32# PEs

152s

174s

64

–

97s

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

CUDA implementation

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

CUDA implementation (future work)

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

CUDA implementation (future work)

• fast communication between processing elements

Explanations and Expectations

OpenMP implementation
• linear speedup due to few communication

• suitable for smaller problem sizes

but: already used CCR’s ”biggest”machine

MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

CUDA implementation (future work)

• fast communication between processing elements

• very high number of processors on single nodes

Sources and References

Hans Delf and Helmut Knebl. Introduction to Cryptography:
Principles and Applications. Springer, 2007.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

Charles P. Pfleeger and Shari L. Pfleeger. Analyzing Compu-
ter Security: A Threat/Vulnerability/Countermeasure Ap-
proach Prentice Hall, 2011.

	Titel

