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Input: hash md5(x) of unknown string x of length |x| ≤ n

Output: string y such that md5(y) = md5(x) and |y| ≤ n

Parallel approach

1. based on their ID, m parallel
processes take a subset of the
possible strings {0, 1}≤n

2. each process calculates hashes
of the strings assigned to it

3. as soon as one process calculates
a hash equal to the input hash, all processes terminate

4. return the colliding string

md5() md5()md5()md5() md5() md5()

!

set of possible strings
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MPI implementation
• slower communication, setup overhead

• more processors available

suitable for larger problem sizes

image source: ozbinoculars

CUDA implementation (future work)

• fast communication between processing elements

• very high number of processors on single nodes
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