HYPER QUICKSORT

Chandani Jaiswal

CSE 633 Spring 2020
Instructor: Prof. Dr. Russ Miller
May 07, 2020

% University at Buffalo The State University of New York

% University at Buffalo the state University of New York

Agenda

* Overview of Parallel Algorithm

* Modified Hyper Quick SortAlgorithm
* Working Example

* Complexity Analysis

* Observations

* Results on Small Data

* Results on Big Data

* Speedups for differentdata

* Limitations

* Learnings

e References

% University at Buffalo the state University of New York

Hypercube

A hypercube of size n consists of n processors indexed by the integers

{0,1,...,n— 1} where n > 0 is an integral power of 2. Processors A and B are
connected if and only if their unique log2 n-bit strings differ in exactly one
position.

100 110

000 010

101 O_ _O

ot 011

3.D hypercube

% University at Buffalo the state University of New York

Parallel Quick Sort Algorithm

We randomly choose a pivot from one of the processers and broadcast it to every
processor.

Each processor divide its unsorted list into two lists: those smaller than (or equal) the pivot,
those greater than the pivot.

Each processor in the upper half of the processor list sends its “low list” to a partner
processor in the lower half of the processor list and receives a “high list” in return.

Now, the upper-half processors have only values greater than The pivot, and the lower-
half processors have only values smaller than the pivot.

Thereafter, the processors divide themselves into two groups and the algorithm
continues recursively.

After log(P) recursions, every processor has an unsorted list of values completely disjoint
from the values held by the other processers.

The largest value on processor 1 will be smaller than the smallest value held by
processor 1 + 1

Each processor can sort its list using sequential quicksort.

% University at Buffalo the state University of New York

Hyper Quicksort Algorithm
* Each processor starts with a sequential quicksort on its local list
* Now we have a better chance to choose a pivot that is close to the true median.

* The processor that is responsible for choosing the pivot can pick the median of its
local list.

The three next steps of hyper quick sort are the same as in parallel algorithm 1.
* Broadcast
* Division of “low list” and high list”

* Swap between partner processors

The next step 1s different in hyper quick sort.

* On each processor, the remaining half of local list and the received half-list are
merged into a sorted locallist.

* Recursion within upper-half processors and lower-half processors.

% University at Buffalo the state University of New York

Example

PO P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

Each process sorts values it controls

% University at Buffalo the state University of New York

Example
PO P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18
Process PO broadcasts its median value
Q\

% University at Buffalo the state University of New York

Example
PO P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18
1,3,5,8,10 || 2,4,6,7,9 || 12,13,15,17,20 || 11,14,16,18,19
Processes will exchange “low”, “high” lists
PO-P2 and P1-P3
Q\

% University at Buffalo the state University of New York

Example

PO

P1

P2

P3

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,3,5,8,10

1,3,5,8,10

2,4,6,7,9

2,4,6,7,9

12,13,15,17,20 |

112,13,15,17,20

11,14,16,18,19

111,14,16,18,19

Processes merge kept and received values.
Processes PO and P2 broadcast median values.

N

N

N
\\
9 o
¢ \\
/’ LY
¢

% University at Buffalo the state University of New York

Example

PO

P1

P2

P3

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,3,5,8,10

1,3,5,8,10

2,4,6,7,9

2,4,6,7,9

12,13,15,17,20 |

| 12,13,15,17,20

11,14,16,18,19

111,14,16,18,19

1,2,3,4,5 | 6,7,8,9,10 ||| 11,12,13,14,15 || 16,17,18,19,20

Communication pattern for second exchange Q

[N

N

N
\\
10 p
/, \\
¢ LY
¢

té University at Buffalo The State University of New York

Complexity Analysis

* The N log N term represents the sequential running time from Step 2.
The d(d + 1)/2 term represents the broadcast step used in Step 4.

* The dN term represents the time required for the exchanging and
merging of the sets of elements.

did+ 1)
O| Nlog N + 5 +dN).

% University at Buffalo the state University of New York

Observations

1. Log P steps are needed in the recursion.

* The expected number of times a value is passed from one process to another
is log P/ 2, that is quite some communication overhead!

* The median value chosen from a local segment may still be quite
different from the true median of the entire list.

2. Although better than parallel quicksort algorithm 1, load imbalance may still
arise.
Solution:

e Algorithm 3 — parallel sorting by regular sampling

% University at Buffalo the state University of New York

OBSERVATIONS
Small Data (1 Million)

Number of Execution
Processors Time (msec) s

2

4

16

32

64

128

5.2

4.6

2.8

1.8

2.4

3.3

8.4

8

7

Excecution Time (msec)
N w =Y (9] [=)]

[y

o

o

20 40 60 80 100 120 140
Processors

% University at Buffalo the state University of New York

OBSERVATIONS
Large Data (10 Million)

Number of Execution
Processors Time (msec)

2 474

4 451

8 340 :
16 186 :
32 126

64 93

128 86

% University at Buffalo the state University of New York

OBSERVATIONS SPEED UP
Small Data (1 Million)

Number of Speedup
Processors

) 4.70 SpeedUp
4 4.89

8 8.27

16 12.63

32 10.43

64 7.5

128 2.89

% University at Buffalo the state University of New York

OBSERVATIONS
Large Data (10 Million)

Number of SpeedUp
Processors

2

4

8

16

32

64

128

SpeedUp

3.17

3.31

4.41

8.16

12.13

15.95

17.64

% University at Buffalo the state University of New York

Limitations

The number of processors has to a be a power of 2. Very High communication

overhead.

17

% University at Buffalo the state University of New York

Learnings

* Observed the difference in runtimes for different number of processors so as the no
of processors increase runtime decrease up to certain level and then its increases.

e In order to achieve better performance its critical to identify the optimal number of
processors that would be required for any given computation.

e [ts always better to limit the number of processors to get maximum speedup.

% University at Buffalo the state University of New York

References

e Algorithms, Sequential and Parallel: A Unified Approach — Russ Miller and Laurence
Boxer. 3rd Edition.

* https://www.uio.no/studier/emner/matnat/ifi/INF3380/v10/undervisningsmateriale/in
{3380-week12.pdf

Questions??

% University at Buffalo The State University of New York

i .
£ N
rid > N
’ S >
(N
Q 7 N \\
’ \\ \<,__, ’
’
7 s sy ° 7
N
‘< ; \ Q ’
(o} ’ N . ’
/) “~ \ ’
4 . -~
V4 (] “~
\ 1 LN
\\ 1 \\
N \ \
S \ S
S S S
N S S
N . S
N LY \\
> LS \
Q ¥ \\
N
N b4 S
\
\ ’
N ’
N ’
LS
LS ¢
\ ’
L8 ’
N ’
AN
AN ’
N 2
N7z v

% University at Buffalo The state University of New York

