
1

Chandani Jaiswal
CSE 633 Spring 2020
Instructor: Prof. Dr. Russ Miller
May 07, 2020

HYPER QUICKSORT

• Overview of ParallelAlgorithm
• Modified Hyper Quick SortAlgorithm
• Working Example
• Complexity Analysis
• Observations
• Results on SmallData
• Results on Big Data
• Speedups for differentdata
• Limitations
• Learnings
• References

2

Agenda

Hypercube

.
A hypercube of size n consists of n processors indexed by the integers
{0,1, . . . , n − 1} where n > 0 is an integral power of 2. Processors A and B are
connected if and only if their unique log2 n-bit strings differ in exactly one
position.

• We randomly choose a pivot from one of the processers and broadcast it to every
processor.

• Each processor divide its unsorted list into two lists: those smaller than (or equal) the pivot,
those greater than thepivot.

• Each processor in the upper half of the processor list sends its “low list” to a partner
processor in the lower half of the processor list and receives a “high list” in return.

• Now, the upper-half processors have only values greater than The pivot, and the lower-
half processors have only values smaller than the pivot.

• Thereafter, the processors divide themselves into two groups and the algorithm
continues recursively.

• After log(P) recursions, every processor has an unsorted list of values completely disjoint
from the values held by the other processers.

• The largest value on processor i will be smaller than the smallest value held by
processor i +1

• Each processor can sort its list using sequential quicksort.

4

Parallel Quick Sort Algorithm

• Each processor starts with a sequential quicksort on its local list

• Now we have a better chance to choose a pivot that is close to the true median.

• The processor that is responsible for choosing the pivot can pick the median of its
local list.

• The three next steps of hyper quick sort are the same as in parallel algorithm 1.

• Broadcast

• Division of “low list” and high list”

• Swap between partner processors

• The next step is different in hyper quick sort.

• On each processor, the remaining half of local list and the received half-list are
merged into a sorted locallist.

• Recursion within upper-half processors and lower-half processors.

5

Hyper Quicksort Algorithm

P0 P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

6

Example

Each	process	sorts	values	it	controls

P0 P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

7

Example

Process	P0	broadcasts	its	median	value

P0 P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,3,5,8,10 || 2,4,6,7,9 || 12,13,15,17,20 ||11,14,16,18,19

8

Example

Processes	will	exchange	“low”,	“high”	lists
P0-P2	and	P1-P3

P0 P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,3,5,8,10 || 2,4,6,7,9 || 12,13,15,17,20 ||11,14,16,18,19

1,3,5,8,10 || 2,4,6,7,9 ||| 12,13,15,17,20 ||11,14,16,18,19

9

Example

Processes	merge	kept	and	received	values.
Processes	P0	and	P2	broadcast	median	values.

P0 P1 P2 P3
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 ||4,7,11,16,18

1,3,5,8,10 || 2,4,6,7,9 || 12,13,15,17,20 ||11,14,16,18,19

1,3,5,8,10 || 2,4,6,7,9 ||| 12,13,15,17,20 ||11,14,16,18,19

1,2,3,4,5 || 6,7,8,9,10 ||| 11,12,13,14,15 ||16,17,18,19,20

10

Example

Communication	pattern	for	second	exchange

• The	N	log	N	term	represents	the	sequential	running	time	from	Step	2.	
The	d(d	+	1)/2	term	represents	the	broadcast	step	used	in	Step	4.

• The	dN term	represents	the	time	required	for	the	exchanging	and	
merging	of	the	sets	of	elements.

11

Complexity Analysis

Observations
1. Log P steps are needed in the recursion.

• The expected number of times a value is passed from one process to another
is log P / 2 , that is quite some communication overhead!

• The median value chosen from a local segment may still be quite
different from the true median of the entire list.

2. Although better than parallel quicksort algorithm 1, load imbalance may still
arise.

Solution:
• Algorithm 3 – parallel sorting by regular sampling

12

Small Data (1 Million)

OBSERVATIONS

Number of
Processors

Execution
Time (msec)

2 5.2

4 4.6

8 2.8

16 1.8

32 2.4

64 3.3

128 8.4
13

Large Data (10Million)

OBSERVATIONS

Number of
Processors

Execution
Time (msec)

2 474

4 451

8 340

16 186

32 126

64 93

128 86
14

Small Data (1 Million)

OBSERVATIONS SPEED UP

Number of
Processors

Speedup

2 4.70

4 4.89

8 8.27

16 12.63

32 10.43

64 7.5

128 2.89
15

Large Data (10Million)

OBSERVATIONS

Number of
Processors

SpeedUp

2 3.17

4 3.31

8 4.41

16 8.16

32 12.13

64 15.95

128 17.64
16

Limitations

The number of processors has to a be a power of 2. Very High communication
overhead.

17

• Observed the difference in runtimes for different number of processors so as the no
of processors increase runtime decrease up to certain level and then its increases.

• In order to achieve better performance its critical to identify the optimal number of
processors that would be required for any given computation.

• Its always better to limit the number of processors to get maximum speedup.

18

Learnings

• Algorithms, Sequential and Parallel: A Unified Approach – Russ Miller and Laurence

Boxer. 3rd Edition.

• https://www.uio.no/studier/emner/matnat/ifi/INF3380/v10/undervisningsmateriale/in
f3380-week12.pdf

19

References

16

Questions??

16

THANK
YOU

