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Problem Description 
• Clustering is the task of assigning a set of objects into groups  

 (called clusters) so that the objects in the same cluster are more 

similar  (in some sense or another) to each other than to those in 

other clusters. 

As a naïve example: animals can be clustered as land animals, water 

animals and amphibians. 

• k-means clustering is a method of clustering which aims 

to partition  n data points into k clusters (n >> k) in which each 

observation belongs to the cluster with the nearest mean. 

• The nearness is calculated by distance function which is mostly 

Euclidian  distance or Manhattan distance. 

• One important assumption to be made is the data points are 

independent of each other. In other words there exists no 

dependency between any data  points.  



Problem Description – Sequential 
Algorithm 

Given an initial set of k means m1
(1),…,mk

(1)  

    (initially k random data points are assigned as K means) where mi  is the 
means of the cluster i. 

 

Assignment step: Assign each observation to the cluster with the closest 
mean 

 

 

 

Update step: Calculate the new means to be the centroid of the 
observations in the cluster. 

 

 

 

 

Repeat Assignment step and Update step until convergence 

 



 Problem Description -  Example 

K points are randomly 
chosen and taken as means 

of K sets 

K clusters are created by 
associating each point to 
the set with nearest mean  

The centroid  of each of 
the k clusters becomes the 

new mean 

Repeat until convergence 



Problem Description –  
K-means clustering convergence 

 When to stop ? 
• A maximum number of iterations has been 

performed. 

• Fewer than a threshold percentage of data points 

are reassigned during an iteration. 

• All means migrate less than a threshold 

     distance during an update cycle. 

 



Implementation - MPI 

Consider N data points  each of it is vector and P processors. 

(1) Assign N/P data points to each processor. 

(2) Node 0 randomly choose K points and assigns them as     

      cluster  means and broadcast. 

(3) In each processor for each data point find membership  

     using the cluster mean. 

(4) Recalculate local means for each cluster in each processor. 

(5) Globally broadcast all local means for each processor find      

      the global mean. 

(6) Go to step (3) and repeat until the number of   

      iterations > 10000 or number of points where membership   

      has changed is less than 0.1 %.  

 



Implementation-MPI-Example 

K=2 ,P = 3 ,Dataset=[41,42,43,101,102,103] 

{} = subset   [] = membership  () = cluster mean 
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{102,103} 

[-1,-1] 
(41,42) 

 

Denotes a 
node 

Initialization 
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Assignment Step  

EXIT AFTER THIS POINT AS MEMBERSHIP DOESN’T CHANGE  



Implementation - OpenMP 

Consider N data points  each of it vector and P threads. 

(1)  Node 0 randomly choose K points as assign them as      

       cluster means. 

(2) In each thread for each data point find membership  

      using the cluster mean. 

(3) Recalculate local means for each cluster in each   

      thread. 

(4) Globally broadcast all local means for each  

      processor and find the global mean. 

(5) Find the global mean in each thread 

(6) Go to step (2) and repeat until the number of  

      iterations >10000 or number of points where membership  

      has is less than 0.1 %.  

 



Test  Results 

• Each data point is 1X100 vector (which can be 

extended to any size 1XK without changing the 

code) 

• Used 8 nodes of 8 cores for MPI and 1 node of 32 

core for OpenMP 

• Tried for cores 2,4,8,16,32 and 64 for MPI 

• Tried for threads 2,4,8,16 and 32 for OpenMP 

 



Test  Results 

• Took an average of 10 runs 

• The number of data points tested were 

1000,10000,100000,1000000 

• In MPI we start taking timings after the I/O 

operation of data placement into the nodes. 

• I/O operation of data placement is much more than 

computational time. 

 



Sequential V/s Parallel (MPI) 



MPI Results 



OpenMP Results 



MPI v/s OpenMP 



OpenMP Time Test Readings (in sec) 

2 4 8 16 32 

1000 0.0118 0.0087 0.009 0.0066 0.0043 

10000 0.1582 0.1234 0.08117 0.0698 0.0407 

100000 1.4897 0.9337 0.7925 0.6038 0.3404 

1000000 18.7079 9.8705 7.613 5.0962 3.0816 

Number of threads 

Number of 
Data 

points 



MPI Time Test Readings (in sec) 

2 4 8 16 32 64 

1000 0.03169 0.0178 0.01065 0.00789 0.01886 0.04289 

10000 0.35529 0.21173 0.10899 0.05737 0.2346 0.20442 

100000 4.06499 2.1171 1.02921 0.53855 0.89992 0.84488 

1000000 22.57271 16.41537 8.12979 5.03628 6.03449 4.98651 

Number of processors 

Number of 
Data 

points 



Speedup with K 

• K refers to number of clusters 

• More iterations occur for convergence 

• More iterations means more communication 

• Speed up decreases as K increases 



Conclusions 

• K means clustering is not a problem that can be 

easily parallelizable as it requires frequent 

communication between each nodes. 

• We do not get very great speedup in MPI due to 

communication overhead. 

• OpenMP gives better performance than MPI 



Future Work  

• We can use a hybrid of OpenMP and MPI to improve 

the speed. 

• The loop where each point is assigned membership 

to right cluster can be threaded in a particular 

node. 

• Since it is an NP Hard problem we can use a lot of 

approximation techniques to reduce the number of 

iterations and increase speedup. 
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