
Parallel K-means Clustering

 Ajay Padoor Chandramohan

 Fall 2012

 CSE 633

Outline

Problem description

Implementation – MPI

Implementation – OpenMP

Test Results

Conclusions

Future work

Problem Description
• Clustering is the task of assigning a set of objects into groups

 (called clusters) so that the objects in the same cluster are more

similar (in some sense or another) to each other than to those in

other clusters.

As a naïve example: animals can be clustered as land animals, water

animals and amphibians.

• k-means clustering is a method of clustering which aims

to partition n data points into k clusters (n >> k) in which each

observation belongs to the cluster with the nearest mean.

• The nearness is calculated by distance function which is mostly

Euclidian distance or Manhattan distance.

• One important assumption to be made is the data points are

independent of each other. In other words there exists no

dependency between any data points.

Problem Description – Sequential
Algorithm

Given an initial set of k means m1
(1),…,mk

(1)

 (initially k random data points are assigned as K means) where mi is the
means of the cluster i.

Assignment step: Assign each observation to the cluster with the closest
mean

Update step: Calculate the new means to be the centroid of the
observations in the cluster.

Repeat Assignment step and Update step until convergence

 Problem Description - Example

K points are randomly
chosen and taken as means

of K sets

K clusters are created by
associating each point to
the set with nearest mean

The centroid of each of
the k clusters becomes the

new mean

Repeat until convergence

Problem Description –
K-means clustering convergence

 When to stop ?
• A maximum number of iterations has been

performed.

• Fewer than a threshold percentage of data points

are reassigned during an iteration.

• All means migrate less than a threshold

 distance during an update cycle.

Implementation - MPI

Consider N data points each of it is vector and P processors.

(1) Assign N/P data points to each processor.

(2) Node 0 randomly choose K points and assigns them as

 cluster means and broadcast.

(3) In each processor for each data point find membership

 using the cluster mean.

(4) Recalculate local means for each cluster in each processor.

(5) Globally broadcast all local means for each processor find

 the global mean.

(6) Go to step (3) and repeat until the number of

 iterations > 10000 or number of points where membership

 has changed is less than 0.1 %.

Implementation-MPI-Example

K=2 ,P = 3 ,Dataset=[41,42,43,101,102,103]

{} = subset [] = membership () = cluster mean

{41,42}
[-1,-1]

(41,42)

{43,101}

[-1,-1]
(41,42)

{102,103}

[-1,-1]
(41,42)

Denotes a
node

Initialization

Implementation-MPI-Example

K=2 ,P = 3 ,Dataset=[41,42,43,101,102,103]

{} = subset [] = membership () = cluster mean

{41,42}
[-1,-1]

(41,42)

{43,101}

[-1,-1]
(41,42)

{102,103}

[-1,-1]
(41,42)

{41,42}

[1,2]
(41,42)

{43,101}

[2,2]
(41,42)

{102,103}

[2,2]
(41,42)

Assignment Step

Denotes a
node

Initialization

Implementation-MPI-Example

{} = subset [] = membership () = cluster mean

{41,42}
[1,2]

(41,78.2)

{43,101}

[2,2]
(41, 78.2)

{102,103}

[2,2]
(41, 78.2)

Update Centroid , Broadcast and find Global mean

Implementation-MPI-Example

{} = subset [] = membership () = cluster mean

{41,42}
[1,2]

(41,78.2)

{43,101}

[2,2]
(41, 78.2)

{102,103}

[2,2]
(41, 78.2)

Update Centroid , Broadcast and find Global mean

{41,42}

[1,1]
(41,78.2)

{43,101}

[1,2]
(41, 78.2)

{102,103}

[2,2]
(41, 78.2)

Assignment Step

Implementation-MPI-Example

{} = subset [] = membership () = cluster mean

{41,42}

[1,1]
(42,102)

{43,101}

[1,2]
(41, 102)

{102,103}

[2,2]
(41, 102)

Update Centroid , Broadcast and find Global mean

Implementation-MPI-Example

{} = subset [] = membership () = cluster mean

{41,42}

[1,1]
(42,102)

{43,101}

[1,2]
(41, 102)

{102,103}

[2,2]
(41, 102)

{41,42}

[1,1]
(42,102)

{43,101}

[1,2]
(41, 102)

{102,103}

[2,2]
(41, 102)

Update Centroid , Broadcast and find Global mean

Assignment Step

EXIT AFTER THIS POINT AS MEMBERSHIP DOESN’T CHANGE

Implementation - OpenMP

Consider N data points each of it vector and P threads.

(1) Node 0 randomly choose K points as assign them as

 cluster means.

(2) In each thread for each data point find membership

 using the cluster mean.

(3) Recalculate local means for each cluster in each

 thread.

(4) Globally broadcast all local means for each

 processor and find the global mean.

(5) Find the global mean in each thread

(6) Go to step (2) and repeat until the number of

 iterations >10000 or number of points where membership

 has is less than 0.1 %.

Test Results

• Each data point is 1X100 vector (which can be

extended to any size 1XK without changing the

code)

• Used 8 nodes of 8 cores for MPI and 1 node of 32

core for OpenMP

• Tried for cores 2,4,8,16,32 and 64 for MPI

• Tried for threads 2,4,8,16 and 32 for OpenMP

Test Results

• Took an average of 10 runs

• The number of data points tested were

1000,10000,100000,1000000

• In MPI we start taking timings after the I/O

operation of data placement into the nodes.

• I/O operation of data placement is much more than

computational time.

Sequential V/s Parallel (MPI)

MPI Results

OpenMP Results

MPI v/s OpenMP

OpenMP Time Test Readings (in sec)

2 4 8 16 32

1000 0.0118 0.0087 0.009 0.0066 0.0043

10000 0.1582 0.1234 0.08117 0.0698 0.0407

100000 1.4897 0.9337 0.7925 0.6038 0.3404

1000000 18.7079 9.8705 7.613 5.0962 3.0816

Number of threads

Number of
Data

points

MPI Time Test Readings (in sec)

2 4 8 16 32 64

1000 0.03169 0.0178 0.01065 0.00789 0.01886 0.04289

10000 0.35529 0.21173 0.10899 0.05737 0.2346 0.20442

100000 4.06499 2.1171 1.02921 0.53855 0.89992 0.84488

1000000 22.57271 16.41537 8.12979 5.03628 6.03449 4.98651

Number of processors

Number of
Data

points

Speedup with K

• K refers to number of clusters

• More iterations occur for convergence

• More iterations means more communication

• Speed up decreases as K increases

Conclusions

• K means clustering is not a problem that can be

easily parallelizable as it requires frequent

communication between each nodes.

• We do not get very great speedup in MPI due to

communication overhead.

• OpenMP gives better performance than MPI

Future Work

• We can use a hybrid of OpenMP and MPI to improve

the speed.

• The loop where each point is assigned membership

to right cluster can be threaded in a particular

node.

• Since it is an NP Hard problem we can use a lot of

approximation techniques to reduce the number of

iterations and increase speedup.

References

“Algorithms Sequential & Parallel: A Unified

Approach” – Russ Miller and Lawrence Boxer

“Parallel k-Means Clustering for Quantitative Ecoregion

Delineation using Large Data Sets” – Jitendra

Kumara, Richard T. Millsa, Forrest M. Homana,

William W. Hargroveb

“Parallel k/h-Means Clustering for Large Data Sets” -

Kilian Stoel and Abdelkader Belkoniene

Questions/Comments

