
Count Primes Using MPI
By Congying Wang

Spring 2018 CSE633
Instructor : Dr. Russ Miller

Why did I choose this topic

MPI primarily addresses the message-passing parallel
programming model： data is moved from the address
space of one process to that of another process through
cooperative operations on each process.

Why MPI:

Standardization, Portability, Performance (Vendor
implementations), Availability, Functionality

This topic can clearly show how parallel computing has a
better performance by comparing with the sequential
computing.

Why we count prime number

They are a mathematical mystery

One of the most widely used applications of prime
numbers in computing is the RSA encryption
system

Large prime numbers are used prominently in
other crypto-systems

The largest known prime is 243,112,609 – 1

https://theconversation.com/the-rsa-algorithm-or-how-to-send-private-love-letters-13191
https://theconversation.com/the-rsa-algorithm-or-how-to-send-private-love-letters-13191

The algorithm for generating
the primes

trial division algorithm

Trail division divides an n-bit random number by primes up to
sqrt(n)

• Accept some input integer n  

• For each integer x from {2 ... sqrt(n)} check if x divides n 

• If you found a divisor then n is composite OR ELSE n is prime 

Use MPI to distribute workload

• If there are n workers, the i th node starts with the
2i-1th value.  

• Worker then checks every 2n values from its start
position until all numbers have been checked.  

• Worker sends found primes to master node as
soon as they are found.  

Experiment Details
• Using Intel MPI

• This implementation has multi-network
support (TCP/IP, Infiniband, Myrinet, etc.)

• Compiler "wrappers" around both Intel's
compiler suite (mpiifort, mpiicc, mpiicpc) and
the GNU compilers (mpif90, mpicc, mpicxx)

• This implementation runs over InfiniBand.

https://ubccr.freshdesk.com/solution/articles/5000690590

MPI usage

[user@rush mpi-stuff]$ module load intel/14.0

[user@rush mpi-stuff]$ module load intel-mpi/4.1.3

[user@rush mpi-stuff]$ mpiicc -o cpi cpi.c

[user@rush mpi-stuff]$ mpiexec.hydra -n 2 ./cpi

While using sequential

0.000000

75.000000

150.000000

225.000000

300.000000

1 16 256 4096 65536 1048576

Sequence 4 process

0

20000

40000

60000

80000

1 4 16 64 256
1024
4096
16384
65536
262144
1048576
4194304
16777216
67108864

4 8 16 32 64 256 128

But while Compare small
number with different
number of processes

0.000000

0.000750

0.001500

0.002250

0.003000

256 1024 40960.000019 0.000075

0.000870

0.000017 0.000085

0.000989

0.000019
0.000123

0.001442

0.000019
0.000129

0.001453

0.000024
0.000225

0.002851

0.000024
0.000234

0.002890

2 process 6 process 10 process 12 process 14 process
16 process

Let’s see more detail

Ti
m

e
 A

xi
s

0.000000

0.000043

0.000085

0.000128

0.000170

0 1 1 2 2

14 process

14 process

16 process

16 process

12 process

12 process

10 process

10 process

6 process

6 process

8 process

8 process

4 process

4 process

2 process

2 process

2 process 4 process 8 process 6 process 10 process
12 process 16 process 14 process

• More process doesn’t mean faster

• 12 process even slower than 4 process

Jobs with very small numbers are bound by
communication time.

Since sequential runtime is so small, the time to
send found primes to the head node makes the
program take longer with more nodes, and makes
adding processors slow down the program’s
runtime.

Parallel execution of these computations is
impractical.

We don’t need parallel execution for small number

0.000000

200.000000

400.000000

600.000000

800.000000

16384 65536 262144 1048576 4194304

12 process 14 process 16 process 32 process

Observation
• The difference happens when number is large.

• The counting prime algorithm also influence the
running time .

• The communication time cannot be ignored.
When number of processor is increasing, the
efficiency of parallel algorithm drops, cost of
communication increases.

Thinking
• Is there any way other than mpi can make

counting prime more quick

• Other algorithm better than trial division. The paper
and example I read about all using trial division

• If the finding range is limited in a small range,
parallel computing is not needed.

• Is there any formula to calculate best amount of
process

Something I learned

• Write C and MPI

• C for me is hard

• Everything is not absolute

• You can only say parallel computing is helping
when your data is large enough

Reference
• Introduction of MPI

• MPI usage handbook

• programming MPI with C

• Parallelization of Prime Number Generation Using
Message Passing Interface

• Why do we need to know about prime numbers
with millions of digits?

https://cs.nyu.edu/courses/spring03/G22.2945-001/lectures/mpi.pdf
https://computing.llnl.gov/tutorials/mpi/
http://people.sc.fsu.edu/~jburkardt/c_src/prime_mpi/prime_mpi.html
http://www.wseas.us/e-library/transactions/computers/2008/25-679N.pdf
http://www.wseas.us/e-library/transactions/computers/2008/25-679N.pdf
https://ubccr.freshdesk.com/support/solutions/articles/13000010161-mpi-and-parallel-computing
https://ubccr.freshdesk.com/support/solutions/articles/13000010161-mpi-and-parallel-computing

Thank you for your
listening !

