
CSE633 Boids
Flocking Simulation: by Shaun Cosgrove



Boids

“Boids” is the phonetic 
spelling of “Birds” when 
spoken with a New York 
accent



Flocking Simulation
● Originally simulator for the flocking 

behaviour of birds
● Simple set of rules

○ Emergent Behaviour
■ Complexity arises from the interaction of 

individual Boids 



Boids Rules
● Separation
● Alignment
● Cohesion

Images Credit http://www.red3d.com/cwr/boids/



Processor 1
Processor 2
Processor 3
Processor 4
….
….
….

Implementation Example



CSE633 Boids - 
Implementation & 
Analysis

Flocking Simulation: by Shaun Cosgrove



Boids Rules
● Separation
● Alignment
● Cohesion

Images Credit http://www.red3d.com/cwr/boids/



Static Spatial Decomposition

21

4 5

3

6

7 8 9

● Divide total area into sub areas

● Assign each sub area to a processor

● Perform computation on each sub area

● Sync data

● Repeat

~4000m

~4000m



Shared Borders

21

4 5

3

6

7 8 9

● Computation on any sub areas 
requires data from every neighbour

● Transmit all boids to / from 
neighbours?

● Necessary to reduce communication 
requirements for faster 
implementation



Sub Area Optimizations

● Binning of Boids

● Each sub area divided into bins

● Boid algorithm performed on 
binned Boids

21

4 5

3

6

7 8 9
5,25,1

5,4 5,5

5,3

5,6

5,7 5,8 5,9



Border Communication
21

4 5

3

6

7 8 9

● Boids sphere of influence goes outside 
local sub area

● Correct Simulation Requires Data from 
each neighbour

● Make each computation communicate 
with neighbours for data?

● How much data to get?

● Efficiency very important



Communication Optimization
● Take the border bins

● TX and RX all boids in these 
bins to their respective 
neighbours

● Buffer neighbour Boids for 
processing in all sub-areas

● Ensures correct simulation in 
all sub areas 

21

4 5

3

6

7 8 9
5,25,1

5,4 5,5

5,3

5,6

5,7 5,8 5,9

6
4

2

8



Communication States

Boid Lengths Boid Lists

B
arrier



Application Sequence
Processing Comm Barrier

Processing Comm Barrier

Processing Comm Barrier

Processing Comm Barrier



Notes
● Running time of algorithm is heavily dependent 

on Boids configuration
● Tighter flocking results in slower running times
● This implementation:

○ Un-optimized 
○ Heavily dependent on arraylists
○ Has a large memory overhead



Test Setup
● Fixed area ~4000 x ~4000 m
● Fixed bin dimension of 40 x 40 m
● Variable bin size per test size
● Scalable implementation
● 900 - 230,400 Boids 
● 3x3 - 10x10 sub areas



Brute Force Vs Optimized Algorithms



Optimized Algorithm Single Instance



Optimized Algorithm - Parallel Instance Times



Speed Up vs Single Instance



Theoretical Growth Rate
Brute force: (Nested for loop)
As each Boid must be checked against every other Boid 
to determine if it is in its sphere of influence, this is a O
(n2) algorithm
Grid based: Assuming even Boid distribution
Each Grid has a size that is no less than the sphere of 
influence of the individual Boids. To correctly perform the 
simulation for Boid_A, only the Boids in the 8 
neighbouring Grids and the Boids in the current Grid 
need to be checked. As these will be the only Boids that 
can be in the sphere of influence of Boid_A the 
simulation will be accurate. With even Boid distribution, 
this is a O(a*n) algorithm for some constant a

Boids Comp: 
Brute 

Comp: 
Grid

900 810000 8100

1800 3240000 16200

3600 12960000 32400

7200 51840000 64800

14400 207360000 129600

28800 829440000 259200

The table above shows the number of 
comparisons required to perform the algorithm for 
one cycle for an increasing number of boids



Actual Growth Rate*

*Running times for brute force are projected above 14400 Boids. The actual growth rate is expected to be at least this amount

● Growth of the optimized version 
increases towards O(n2) with large 
numbers of boids but its running 
time is orders of magnitude faster 
than the Brute Force algorithm



Actual Growth Rate 16 proc
● The growth of the optimized 

algorithm moves towards O(n2 
) after a certain number of 
boids is reached.

● Note: The tests run with 
smaller number of Boids will 
show greater jitter due to the 
small scale of the simulation, 
the mpi implementation and 
certain other random factors 
inherent to the simulation



Actual Growth Rate 81 proc
● Again, the growth of the 

optimized algorithm moves 
towards O(n2 ) after a certain 
number of boids is reached.

● This is true for no matter the 
number of processors that are 
used in the test



Actual Growth Rate 



Actual Growth Rate
● As the number of Boids increases, the growth rate of the optimized 

algorithm nears or exceeds O(n2)
● This will be in part due to uneven distribution of the Boids during the 

simulation for the optimized algorithm. The Boids will naturally flock 
together in certain regions meaning that for a Boid in a dense region, many 
more comparisons will be required to correctly execute the simulation. 

● As more Boids are added to the same space, the Boids will be more 
compact compounding the natural grouping nature of the Boids and the 
growth of the optimized algorithm increases

● For simulations with larger numbers of Boids, even though the growth rate 
is similar to the brute force algorithm, the actual running time per instance 
is orders of magnitude faster as can be seen in the first graph above



References
● Arup Guha for sample implementation of arraylist 
● Michael Clark <michael@metaparadigm.com> for json-arraylist 

implementation
● Flocking by Daniel Shiffman - Processing Implementation

○ Processing 2.1.1 Example
● Craig Renolds: Original algorithm designer

mailto:michael@metaparadigm.com

