
CSE 633: Parallel Algorithms

Group #24 Members: Group #24 Members:

Shane Anderson

Sergey Cherny

Pratik Deshpande

Aniket Chauhan

What is DES?
 DES (or Data Encryption Standard) is an algorithm

used to encrypt electronic data.

 Encryption takes place as bitwise data transformation
over several stages.over several stages.

 Developed in the late 1970s and implemented by the
early 1980s.

 Still used today, many variants are out there such as
AES (Advanced Encryption Standard).

DES Overview

Structure of DES: Single iteration

f

Short-Key Weakness

 Cryptographers built a machine to break DES in 1998.

 Cost: About $250,000

 Took about 56 hours to find a key

 DES uses a 64 bit key but uses only 56 of those bits for DES uses a 64 bit key but uses only 56 of those bits for
encryption.

 When it was first implemented, this was good enough

 Nowadays, this is too short. More computing power
means keys can be obtained by an exhaustive search,
“brute force”

Known-Plaintext Attack
 We know a corresponding plaintext with ciphertext

 We run DES encryption on each 56-bit key in the key
space and check if it matches the ciphertext.

 You can perform both ways because it is symmetric. You can perform both ways because it is symmetric.

 Our goal is to find the key.

 Each processor will receive a subset of the key space to
search.

 This is different from chosen-plaintext attack.

Total KeySpace to Search
 The total keyspace is 2^56

 2^56 = 7.2057594037927936 x 10^16

 72 quadrillion… = 72 million billion

 This is reduced by one half since taking the This is reduced by one half since taking the
complement of the plaintext and complement of key
will result in the same ciphertext. Therefore we can
just disregard the complement of a key we already
attempted.

 (1/2) x 2^55 = 3.6028797018963968 x 10^16

 36 quadrillion… = 36 million billion

Breaking DES (Logic)
 Distribute the key space among workers.

 Master is responsible for synchronization of the
program.

 Each worker is given the cipher text and corresponding Each worker is given the cipher text and corresponding
plaintext.

 The worker tries to find the key by encrypting the
plain text and comparing it with cipher text using its
own key space.

 As soon as it breaks the key it notifies the master and
the master notifies all other workers to stop
processing.

MPI Implementation ResultsMPI Implementation Results

OBSERVATION TABLE FOR
Keys Searched Per Sec(approximately)

NUMBER OF
WORKERS

Keys Checked per sec

36 workers 19097562

48 workers 2546150448 workers 25461504

72 workers 38192256

98 workers 51983904

120 workers 63653760

168 workers 89115264

Keys Searched Per
Sec(approximately)

120000000

140000000

160000000

180000000

Keys per sec

0

20000000

40000000

60000000

80000000

100000000

120000000

36
workers

48
workers

72
workers

98
workers

120
workers

168
workers

200
workers

300
workers

Keys per sec

Importance of Key position
 In this program the running time is extremely affected

by the position of the key.

 A particular key will be located at the different
positions according to the total number of workers positions according to the total number of workers
chosen.

 Due to this it is very important to calculate the results
based on a specific position of the key for a particular
number of workers.

Implementation
 These graphs are calculated using random keys.

 The running time is in SECONDS.

 As we will see further that we do not get any kind of
consistent results due to it. consistent results due to it.

 These graphs are included just to highlight the
importance of key position.

Nodes vs Running Time
 We observed the number of nodes vs

running time to be as follows: (1
Core/Node)

300

350

400

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Nodes vs Running Time

0

50

100

150

200

250

300

1 2 4 8 16 32 64

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Nodes

N Cores/Node

 H

400

500

600

700

R
u

n
n

in
g

 T
im

e
 (

s)

0

100

200

300

400

0 5 10 15 20 25 30 35

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Nodes

Implementation
 We used 0.001 percent location of key consistently for

variable number of Workers.

 This is done due to the long running time constraint.

 To select the key we wrote a small function. To select the key we wrote a small function.

 The function takes input as total key space and total
number of workers.

 It also takes a particular location of key as input in
percentage form. E.g. Find the key located at 10
percent of each worker when key space is 2^56 and
total number of workers are 32.

Implementation
 The function provides output as the keys in each

worker at that particular user defined location as well
as approximate time required to break the key.

 The graphs are calculated using one of the random The graphs are calculated using one of the random
keys provided by the function.

OBSERVATION TABLE FOR
1 Core Per Node

NUMBER OF
WORKERS

TIME REQUIRED IN
HOURS TO BREAK THE
CIPHER TEXT

36 8.23

72 5.5772 5.57

98 3.56

168 2.24

200 2.38

300 1.03

1 Core Per Node

6

7

8

9

Time Required in Hours

0

1

2

3

4

5

6

35 workers 71 workers 97 workers 168 workers 200 workers 300 workers

Time Required in Hours

OBSERVATION TABLE FOR
N Tasks Per Node

NUMBER OF
WORKERS AND THEIR
CONFIGURATION

TIME REQUIRED IN
HOURS TO BREAK THE
CIPHER TEXT

12nodes 3 tasks per node 8.32

12nodes 6 tasks per node 5.69

14nodes 7 tasks per node 3.35

14nodes 12 tasks per node 2.27

20nodes 10 tasks per node 2.38

60nodes 5 tasks per node 1.18

N Tasks Per Node

6

7

8

9

Time Required in Hours

0

1

2

3

4

5

6

12nodes 3
tasks per

node

12nodes 6
tasks per

node

14nodes 7
tasks per

node

14nodes 12
tasks per

node

20nodes 10
tasks per

node

60nodes 5
tasks per

node

Time
Required in …

Things Learned.....
 The most important part of this project was the enormous data

size.

 So we learned how to handle as well as compute such a huge data
size and make efficient use of computing power provided to us.

 It also painfully taught us to debug long running parallel It also painfully taught us to debug long running parallel
programs eg. Getting errors after the program runs for a long
time.

 One of the important features particular to this project was the
impact of key position and the calculation required to find ideal
keys prior to computation.

 So in short it did teach some basic techniques of Parallel
Programming even though sometimes the lessons were hard.

References & Resources
 Coppersmith, Don. (1994). The data encryption standard (DES)

and its strength against attacks at the Wayback Machine
(archived June 15, 2007). IBM Journal of Research and
Development, 38(3), 243–250.

 Center for Concurrent Research (CCR) Systems

 DES Cracker Machine Project, EFF’s “Deep Crack” (1998):

 http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/
HTML/19980716_eff_des_faq.html

 The DES Algorithm Illustrated by J. Orlin Grabbe

Thank you for your attention! Thank you for your attention!

