Exploring Reversi Endgames via Parallelization

Devanshu Pandey University at Buffalo CSE633-Parallel Computing December 2, 2010

Reversi and the endgame

• <u>Demo</u>

- Branching factor 4 –(Please note that this is something I erroneously picked for my project based on scarce empirical observation). You can find an average of 6-7 moves at each point.
 - Important to my implementation
- Initial central idea Vary the size of the endgame
- Later implemented Monte Carlo Tree Search
- Parallelizing alpha-beta pruning too difficult
 - Parallel Variant Splitting

Implementation

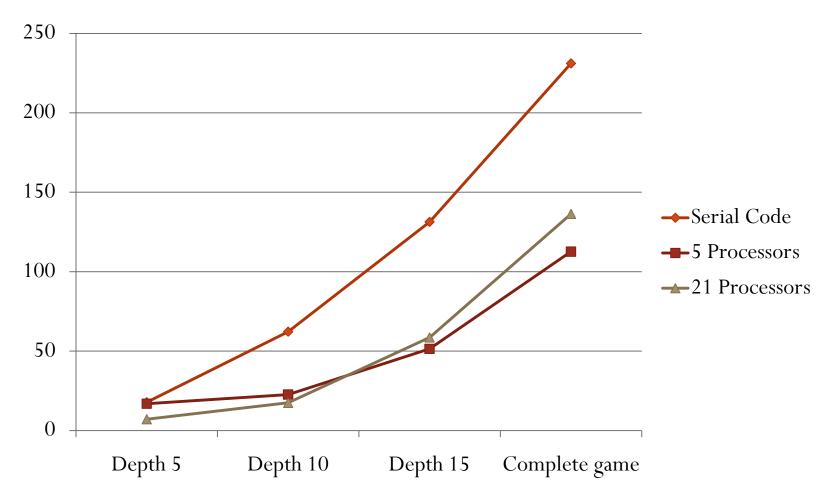
- Python
- MPI work
 - mpi4py
 - MPICH II
- Why?
 - Python's ease of use
 - Testing MPICH II

The Board

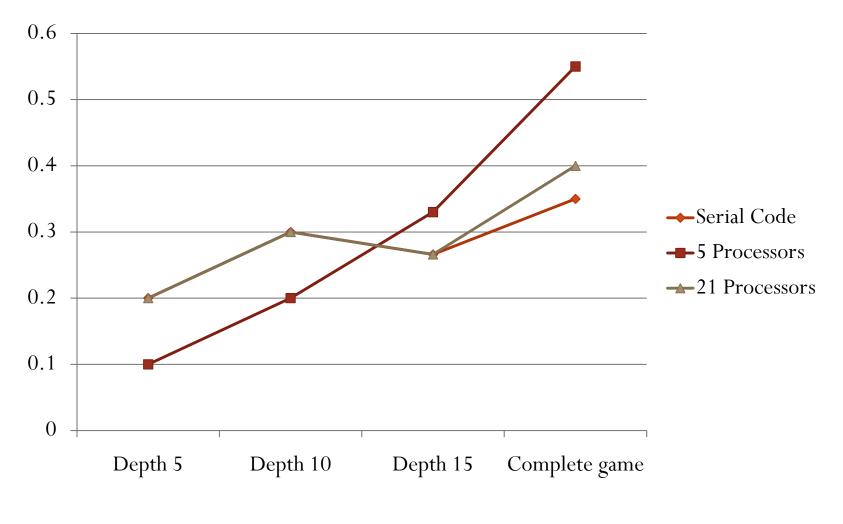
- An 8 x 8 array
- State based implementation
 - Initializing states
 - e_count
- The possible moves function
 - Inefficient?

The parallel algorithm

- Master-Slave implementation
- Root starts the game, initializes the board state
- Calls the possible moves function.
- An average of 4 possible moves, one move per processor


Tasks for every slave PE

- Monte Carlo Tree Search
 - Play random moves till game ends.
- Store the win ratio (# wins/ # times move was played) in a transposition table
 - Transposition table:
 - An array of length 64
 - For position (r, c), index = 8r + c
- In the end, return the transposition tables to the master
- "Zip" the tables together to get final values


Problems

- Full blown tree shaped architecture
 - My implementation truncated
 - CCR problems
 - Bad implementation
- Code translation
 - Time hog
 - Led to inefficient time and space usage

Time (ms) v/s Endgame size

Win Ratio v/s Size of Endgame

Future work

- C implementation
- Achieve time and space efficiency
- MCTS on CUDA

References

- Analysis of Alpha-Beta Pruning. *D. E. Knuth and R.W. Moore*. Artificial Intelligence 6:293-326, 1975
- Artificial Intelligence Second Edition. P. H. Winston, 1984
- MPI4Py Documentation -

http://mpi4py.scipy.org/docs/usrman/index.html

THANK YOU!

Questions?