
Devanshu Pandey

University at Buffalo

CSE633-Parallel Computing
December 2, 2010

Exploring Reversi Endgames via 

Parallelization

12/21/20101



Reversi and the endgame

 Demo

 Branching factor – 4 –(Please note that this is something I 

erroneously picked for my project based on scarce empirical 

observation). You can find an average of 6-7 moves at each 

point.

 Important to my implementation

 Initial central idea –Vary the size of the endgame

 Later implemented Monte Carlo Tree Search

 Parallelizing alpha-beta pruning too difficult

 Parallel Variant Splitting

12/21/20102

http://www.darkfish.com/turncoat/Turncoat.html


Implementation

 Python

 MPI work

 mpi4py

 MPICH II

 Why?

 Python’s ease of use

 Testing MPICH II

12/21/20103



The Board

 An 8 x 8 array

 State based implementation

 Initializing states

 e_count

 The possible moves function

 Inefficient?

12/21/20104



The parallel algorithm

 Master-Slave implementation

 Root starts the game, initializes the board state

 Calls the possible moves function.

 An average of 4 possible moves, one move per processor

12/21/20105



Tasks for every slave PE

 Monte Carlo Tree Search

 Play random moves till game ends.

 Store the win ratio (# wins/ # times move was played) in a 

transposition table

 Transposition table:

 An array of length 64

 For position (r, c), index = 8r + c

 In the end, return the transposition tables to the master

 “Zip” the tables together to get final values

12/21/20106



Problems

12/21/20107

 Full blown tree shaped architecture

 My implementation – truncated

 CCR problems

 Bad implementation 

 Code translation

 Time hog

 Led to inefficient time and space usage



Time (ms) v/s Endgame size

12/21/20108

0

50

100

150

200

250

Depth 5 Depth 10 Depth 15 Complete game

Serial Code

5 Processors

21 Processors



Win Ratio v/s Size of Endgame

12/21/20109

0

0.1

0.2

0.3

0.4

0.5

0.6

Depth 5 Depth 10 Depth 15 Complete game

Serial Code

5 Processors

21 Processors



Future work

12/21/201010

 C implementation

 Achieve time and space efficiency

 MCTS on CUDA



References

12/21/201011

 Analysis of Alpha-Beta Pruning. D. E. Knuth and R. W. Moore. 

Artificial Intelligence 6:293-326, 1975

 Artificial Intelligence – Second Edition. P. H. Winston, 1984

 MPI4Py Documentation -

http://mpi4py.scipy.org/docs/usrman/index.html

http://mpi4py.scipy.org/docs/usrman/index.html


Questions?

12/21/201012

THANK YOU!


