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Reversi and the endgame

 Demo

 Branching factor – 4 –(Please note that this is something I 

erroneously picked for my project based on scarce empirical 

observation). You can find an average of 6-7 moves at each 

point.

 Important to my implementation

 Initial central idea –Vary the size of the endgame

 Later implemented Monte Carlo Tree Search

 Parallelizing alpha-beta pruning too difficult

 Parallel Variant Splitting
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http://www.darkfish.com/turncoat/Turncoat.html


Implementation

 Python

 MPI work

 mpi4py

 MPICH II

 Why?

 Python’s ease of use

 Testing MPICH II
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The Board

 An 8 x 8 array

 State based implementation

 Initializing states

 e_count

 The possible moves function

 Inefficient?
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The parallel algorithm

 Master-Slave implementation

 Root starts the game, initializes the board state

 Calls the possible moves function.

 An average of 4 possible moves, one move per processor
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Tasks for every slave PE

 Monte Carlo Tree Search

 Play random moves till game ends.

 Store the win ratio (# wins/ # times move was played) in a 

transposition table

 Transposition table:

 An array of length 64

 For position (r, c), index = 8r + c

 In the end, return the transposition tables to the master

 “Zip” the tables together to get final values
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Problems
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 Full blown tree shaped architecture

 My implementation – truncated

 CCR problems

 Bad implementation 

 Code translation

 Time hog

 Led to inefficient time and space usage



Time (ms) v/s Endgame size
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Win Ratio v/s Size of Endgame
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Future work
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 C implementation

 Achieve time and space efficiency

 MCTS on CUDA
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Questions?
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THANK YOU!


