
‘-

1

Presenter:

Divya Srivastava

divyasri@buffalo.edu

Person No.- 50290383

PARALLEL ALGORITHMS

K-MEANS CLUSTERING

‘-

2

 The Problem

 Algorithm

 Parallel Algorithm Implementation (MPI)

 Implementation Results

 Experiments

 Observations

 Challenges

 References

Outline

‘-

3

Problem
K-means Clustering

Dividing a large vector filled of points into smaller groups which are organized according to a

centroid point, each group must have almost the same number of components.

Centroids (K)

‘-

4

The algorithm as described in Andrew Ng’s Machine Learning class over course era

works as follows:

 Initialize K cluster centroids randomly

 Repeat the following until there is no further change in the centroid values or for a

specific number of maximum iterations-

 For each point, compute which centroid is nearest to it

 For each centroid, move its location to the mean location of the points
assigned to it

 The distance between a centroid and a point is calculated by: - Euclidean

Distance: Point – K = |Distance| (Absolute value result)

Algorithm

‘-

5

 The parallel implementation uses data parallelism.

 Data objects to be clustered are evenly partitioned among all processes.

 The cluster centers are replicated.

 Global-average reduction for all cluster centers is performed at the end of each

iteration in order to generate the new cluster centers.

 Calculate local sums for each cluster in each processor

 Send these sums to processor 0 and compute the global average

 Broadcast these new centroid values to all processors

 Repeat these steps until n iterations

Parallel Algorithm Implementation (MPI)

‘-

6

Parallel Implementation Results (3 Processors)

Serial Implementation Results

Initial Centroids Centroids after 1st

Iteration
Final Centroids after

30th iteration

‘-

7

EXPERIMENTS

‘-

8

Readings for 1 Million Data Points

‘-

9

‘-

10

Readings for 10 Million Data Points

‘-

11

‘-

12

Readings for 50 Million Data Points

‘-

13

‘-

14

Observations

 In order to achieve better performance its critical to identify the optimal number of

processors that would be required for any given computation as more processors

doesn’t mean significant gains in speedup.

 For 1 million data points, the gain observed from 126 to 256 processors was just

20% which increased to 30% in case of 10 million data points and to 50% in case

of 50 million data points. Hence, increasing the no. of processors to 256 is worth

only in case of huge data.

 The communication time cannot be ignored. When number of processors is

increasing, the efficiency of parallel algorithm drops, cost of communication

increases (This was observed when we increased the number of processors from

128 to 256 with 1 million total data-points).

 For small data size, a graph of valley shape would have been observed where

instead of gain, loss would have been observed as communication cost would

have been more prominent with increasing no. of processors.

 The difference in execution times for different processors is noticeable when the

data size is large.

‘-

15

 Faced deadlock problems and had to make sure that the blocking functions in MPI

were used correctly.

 Experiments on same setup yielded slightly different values. Took averages to

obtain the final results.

Challenges

‘-

16

 Algorithms Sequential and Parallel, A Unified Approach 3rd edition

~Russ Miller, Laurence Boxer

 Mpi4Py official documentation

References

‘-

17

