
Point Domination Query
Hariharan Kumar

What is Point Domination Query??

▪ Subset of computational geometry.

▪ The algorithm gives the dominating points from a given set of points.

▪ A point P(x1, y1) is said to be dominating another point Q(x2, y2) if and only if
the x1>x2 and y1>y2.

Point Domination Query

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10

Input and Output

▪ Input: The input to the system is n number of points which contains x and y
coordinates

▪ Output : The output from the system is the x and y coordinates of the points that
are not dominated by any other points in the given set.

Assumptions & Implementation

▪ No two points have same x and y coordinates.

▪ The input points are sorted with respect to the x coordinates and fed into the
system.

▪ Two ways of implementing the algorithm:

▪ Sequential

▪ The algorithm is implemented in a sequential machine and run for different number of input
datasets.

▪ Parallel

▪ In parallel implementation the algorithm is executed on P processors. The time taken is
calculated and compared for varying P and number of input datasets.

Implementation continued…

▪ The implementation of the algorithm is done by parallel postfix operation on the
given input set.

▪ The running time of the algorithm in RAM is O(N).

▪ In parallel implementation each processors gets equal number of data and they
execute the algorithm sequentially and passes the result to the master processor
which produces the final result.

▪ In parallel implementation the algorithm is implemented by performing parallel
postfix from the last processor and the output is passed on to the next processor
and so on to find the global output.

▪ The parallel implementation is done using MPI.

Serial Implementation Results

Number of Data Running Time (sec)

1000000 0.0155

5000000 0.0714

10000000 0.1679

20000000 0.6922

30000000 0.9976

50000000 1.4345

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1000000 5000000 10000000 20000000 30000000 50000000

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of Input Data

Serial Implementation

Serial Processor

Master/Worker Result

Number of

Data

1 Master & 1

Worker

1 Master & 2

Worker

1 Master & 3

Worker

1 Master & 4

Worker

1 Master & 8

Worker

1000000 0.019354 0.009689 0.008404 0.007761 0.007386

5000000 0.075218 0.044784 0.034091 0.030230 0.031270

10000000 0.149679 0.087725 0.070841 0.061385 0.059326

20000000 0.301983 0.172144 0.142272 0.125485 0.119081

30000000 0.437095 0.259760 0.211865 0.183825 0.178045

50000000 0.769939 0.432947 0.357049 0.300703 0.298823

Results Continued…

Number of

Data

1 Master &

12 Worker

1 Master & 16

Worker

1 Master & 24

Worker

1 Master & 32

Worker

1 Master & 64

Worker

1000000 0.009002 0.007867 0.008407 0.023659 0.035437

5000000 0.031031 0.035673 0.048335 0.096559 0.158106

10000000 0.059447 0.065279 0.070414 0.112851 0.196655

20000000 0.118770 0.121944 0.131146 0.205695 0.331923

30000000 0.182642 0.188615 0.188579 0.324964 0.484273

50000000 0.309990 0.310099 0.317954 0.462323 0.730854

Results Continued…

Number of Data 1 Master & 127 Worker 1 Master & 255 Worker

1000000 0.050494 0.095789

5000000 0.220975 0.906955

10000000 0.317941 0.730254

20000000 0.660369 1.548903

30000000 1.078213 1.903219

50000000 1.627626 3.982638

Master Worker Results for 1000000 data items

0

0.02

0.04

0.06

0.08

0.1

0.12

2 3 4 5 9 13 17 25 33 65 128 256

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Master Worker Results for 5000000 data items

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 9 13 17 25 33 65 128 256

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Master Worker Results for 10000000 data items

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 9 13 17 25 33 65 128 256

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Master Worker Results for 20000000 data items

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 3 4 5 9 13 17 25 33 65 128 256

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Master Worker Results for 30000000 data items

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 9 13 17 25 33 65 128 256

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Master Worker Results for 50000000 data items

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 9 13 17 25 33 65 128 256

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Master/Worker Result Analysis

▪ Initially regardless the number of the data processed the running time decreased when the
number of processors increased.

▪ But it reached the lowest when the number of processor was 25 (24 Workers + 1 Master)

▪ This is evident as when the number of processors are increased more than the previous stated
value the communication time over-shadows the actual processing time of the problem.

▪ This increase in time is contributed by the bottleneck that exists at the Master node that needs
to receive all the prefix results from all the Workers.

▪ As the Master can only receive the results of one Worker at a time the other Worker have to
wait and hence will result in wastage of time.

▪ And also the time taken by each processors to send the prefix results to the Master is higher
than the each Workers’ prefix operation time.

Improvements in Parallelization

▪ From the previous Master/Worker architecture’s result it is clear that the increase
in processor will result in decrease in the running time up to a certain number of
processors.

▪ Increasing the number of processor more than the optimal value will result in
increase in running time which is contributed by communication time needed to
send the result of each Worker to the Master.

▪ This disadvantage is handled by parallelizing the problem by computing the prefix
operation involving all the processors.

▪ For this method a Linear Array is simulated and the problem is solved by
performing Postfix operation on the data in each processor in parallel.

Parallel Postfix Result

Number of

Data

Number of

Processors -

2

3 4 8 12

1000000 0.008353 0.008715 0.007830 0.008143 0.008153

5000000 0.040988 0.040405 0.039386 0.039224 0.038282

10000000 0.079154 0.078881 0.079095 0.077840 0.081121

20000000 0.159838 0.158074 0.157444 0.155752 0.154681

30000000 0.239582 0.235706 0.235154 0.232836 0.206049

50000000 0.402122 0.394601 0.394381 0.387180 0.342925

Results Continued…

Number of

Data

No of

Processors:

16

24 32 64 128

1000000 0.007755 0.007701 0.010043 0.007906 0.016810

5000000 0.037264 0.037659 0.044611 0.037893 0.060687

10000000 0.074712 0.073996 0.088027 0.074891 0.089128

20000000 0.149584 0.149476 0.149421 0.149352 0.159838

30000000 0.224234 0.221895 0.223822 0.224217 0.345100

50000000 0.358662 0.369374 0.373798 0.376584 0.343175

Parallel Postfix Results for 1000000 data items

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

2 3 4 8 12 16 24 32 64 128

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Parallel Postfix Results for 5000000 data items

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 3 4 8 12 16 24 32 64 128

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Parallel Postfix Results for 10000000 data items

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 3 4 8 12 16 24 32 64 128

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Parallel Prefix Results for 20000000 data items

0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

2 3 4 8 12 16 24 32 64 128

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Parallel Postfix Results for 30000000 data items

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 8 12 16 24 32 64 128

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Parallel Postfix Results for 50000000 data items

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

2 3 4 8 12 16 24 32 64 128

T
im

e
 i
n

 S
e

c
o

n
d

s

No of Processors

Comparison of the two Implementation

2 3 4 8 12 16 24 32 64 128

Parallel Postfix 0.159838 0.158074 0.157444 0.155752 0.154681 0.149584 0.149476 0.149421 0.149352 0.159838

Master/Worker 0.172144 0.142272 0.125485 0.119081 0.11877 0.121944 0.131146 0.205695 0.331923 0.660369

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
x

is
 T

it
le

No. of Processors

Master/Worker vs Parallel Postfix for 20000000

data

Parallel Postfix Master/Worker

Parallel Postfix Result Analysis

▪ From the previous graph it can be seen that the time taken when the number of
processor is less in Parallel Postfix implementation tend to be more than the time
taken when the problem is implemented in Master Worker Architecture.

▪ But when the number of processors are increased the running time decreases up
to certain value and then it increases. But the increase in the running time is not
so high as compared to the Master Worker Architecture.

▪ This is because the communication among processors involves only a single
prefix value of the processor to be sent to the next processor as compared to the
Master Worker implementation which needs all the prefix result to be sent to the
Master node.

Conclusion

▪ Master Worker Implementation is good when the number of processor and data is
moderate.

▪ Parallel postfix implementation is better when the number of processor and the
data is high.

▪ The running time decreases up to certain number of processors and then it
increases.

Future Work

▪ Implementation using OpenMPI.

▪ Implementation using CUDA.

▪ Analysis with wider range of data.

References

▪ Algorithms Sequential and Parallel: A Unified Approach, Third Edition Russ Miller
and Laurence Boxer

▪ http://www.cse.buffalo.edu/faculty/miller/Courses/CSE633/Eric-Nagler-Fall-
2011.pdf

http://www.cse.buffalo.edu/faculty/miller/Courses/CSE633/Eric-Nagler-Fall-2011.pdf

Questions?

