
Parallel Fast Fourier Transform

Jessica Grogan

University at Buffalo

Spring 2023



Motivation

There’s many meaningful impacts of the Fourier transform.
For example,

▶ modern medicine

▶ noise cancellation



History

Joseph Fourier, born in 1768, was orphaned by age 10.

Rough childhood, kept busy by studying, became a
mathematician.

He claimed, in the early 19th century, that all functions are
composed of sine and cosine waves.

He was “approximately" correct.



Definition

The Fourier transform takes an input from the one domain
(time) and transfers it to another domain (frequency).

The discrete Fourier transform (DFT) is used for
non-continuous functions. [3] [1]

The Fast Fourier Transform (FFT) is an efficient algorithm for
the DFT. [2]



Sawtooth approximation

We can approximately represent other functions by many
cosine and sine functions



Fourier matrix

The Fourier matrix is composed of entries that make up the
values of the Fourier transform.

Example: n = 4, F4 can be defined as,

F4 =


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9


where ω = e

−2πi
4 . From Euler’s formula we know

eix = cos(x) + i sin(x).



Algorithm

The FFT can be viewed as a matrix vector multiplication,
where X̄ ∈ Rn is our input vector,

y = Fn · x̄

Thanks to Cooley and Tukey we can take advantage of related
entries. So we split the vectors into even and odd
components, repeatedly.



Sequential algorithm

We can decompose the matrix Fn into a product of matrix
multiplications,

Fn = Ar−1 . . .A1A0

where each matrix Ai is a n× n matrix.

Therefore we can represent, Fn · x̄ as,

Ar−1 . . .A1A0 · x̄



Cont.

Fn · x̄ =

[
I n

2
Ω n

2

I n
2

− Ω n
2

]
·

[
F n

2
0

0 F n
2

]
·
[
x̄(0 : 2 : n− 1)
x̄(1 : 2 : n− 1)

]
.

With

Ω n
2
=


1 0 0 . . . 0
0 ωn 0 . . . 0
0 0 ω2

n . . . 0

0 0 0
. . . 0

0 0 0 . . . ω
n
2−1
n





Sorting matrix

Sn · x̄ gives you the even odd split Where

Sn =



1 0 0 0 . . . 0 0 0
0 0 1 0 . . . 0 0 0

...
...

0 0 0 0 . . . 0 1 0
0 1 0 0 . . . 0 0 0
0 0 0 1 . . . 0 0 0

...
...

0 0 0 0 . . . 0 0 1





Spliting x̄

We get

Sn · x̄ =

[
x̄(0 : 2 : n− 1)
x̄(1 : 2 : n− 1)

]



Kronecker product

The kronecker product is used for things like

I2 ⊗ F n
2
=

[
F n

2
0

0 F n
2

]



Butterfly matrix

Bn =

[
I n

2
Ω n

2

I n
2

− Ω n
2

]



Conclusion of the algorithm

Cooley-Tukey decomposition of Fn is

Fn = (I1 ⊗ Bn)(I2 ⊗ B n
2
)(I4 ⊗ B n

4
) . . . (I n

2
⊗ B2)Rn.

Where Rn is the bit reversal permutation matrix:

Rn = (I n
2
⊗ S2) . . . (I4 ⊗ S n

4
)(I2 ⊗ S n

2
)(I1 ⊗ Sn).



Parallelize

Each processor deals with a matrix multiplication such as:

And gets sent to a ready processor in order of how the
matrices need to be multiplied.
I do acknowledge there’s many other ways to parallelize the
Fourier Transform that are probably more efficient. [4]



Scatter Gather
I was able to get a scatter gather version working and run it
multiple times on node variations. This is the runtime with n=
1,000,000. The fraph shows the runtime decreasing with the
number of processors used. 1 node with 1 task, runtime was
.6 seconds. 1 node with 4 tasks, runtime goes to .2 seconds.
Then 2 nodes with 32 tasks per node gets .087 seconds.
Finally, we got .074 seconds with 16 nodes and 32 tasks per
node. We can see the runtime start to level off.



Complete table

This is the complete table of numbers I was able to get for
scatter gather method.



Difficulties / observations

- Data distribution for my algorithm, ordering the mat-muls.

- Data delay for busy processors.



Future work

- Parallelize the inner workings of the matrix multiplications /
implement matrix multiplication using BLAS (Basic linear
algebra subprograms).

- Run this algorithm on GPUs.



References

Discrete-time Fourier Transform.
Discrete-time fourier transform — Wikipedia, the free
encyclopedia, 2005.
https://en.wikipedia.org/wiki/Discrete-time_
Fourier_transform.

Fast Fourier Transform.
Fast foruier transform — Wikipedia, the free encyclopedia,
2008.
https:
//en.wikipedia.org/wiki/Fast_Fourier_transform.

Professor Rob H. Bisseling Utrecht University.
Nonrecursive fast fourier transform, 2022.
https:
//www.youtube.com/watch?v=WcCl4q2p8cM&t=824s.

Professor Rob H. Bisseling Utrecht University.
Parallel fast fourier transform, 2022.
https:
//www.youtube.com/watch?v=K-HwNf1BxwA&t=244s.

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://www.youtube.com/watch?v=WcCl4q2p8cM&t=824s
https://www.youtube.com/watch?v=WcCl4q2p8cM&t=824s
https://www.youtube.com/watch?v=K-HwNf1BxwA&t=244s
https://www.youtube.com/watch?v=K-HwNf1BxwA&t=244s

