Parallel Implementation of Mining Highly Interacted Attribute Pairs

Jianmei Yang

Dec 9 ${ }^{\text {th }}, 2010$

Interaction Mining

- For two attribute variables X_{1} and X_{2} and a class variable Y, when relationship between X_{1} and Y depends on X_{2}, X_{1} and X_{2} are said to be interact.
- Interactions are outcomes that occur when all the variables are observed together
- Interaction between two variables exists when the joint effect of both is different from that obtained by additively combining the individual effects.
- Different interactions: independence, synergy, redundancy.

Interaction Mining using Information Theory

- Let ω denote the set of all random variables:

$$
\omega=\left\{X_{1} ; X_{2} ; \ldots X_{i} ; \ldots ; X_{N}\right\}
$$

X_{i} : A random variable representing an attribute or class label

- Entropy

$$
H\left(X_{i}\right)=-\sum_{x} p\left(X_{i}=x\right) \log _{2}\left(p\left(X_{i}=x\right)\right)
$$

- KWII : Amount of information present in a set of variables, which is not present in any subset of the variables.
- For set of variables $S=\left\{X_{1} ; X_{2} ; \ldots, X_{\mathrm{K}}\right\}$

$$
K W I I(S) \equiv-\sum_{T \subseteq S}(-1)^{|S \backslash T|} H(T)
$$

- e.g. KWII $(A ; B ; C)=-H(A)-H(B)-H(C)+\underbrace{H(A B)+H(A C)+H(B C)}$

University at Buffalo
The State University of New York
$-\underbrace{H(A B C)}$,

Experiment Setting

- Input: Data set of n attribute variables and class variable, number of sample is m
- Computation: Compute the KWII values for all possible attribute pairs
- for N attributes, \# of attribute pairs will be $\mathrm{n} *(\mathrm{n}-1) / 2$
- Output: Attribute pairs with highest KWII value, which is the most significant interacted pairs
- Sequential running time: $O\left(n^{2} m\right)$
- Can be very time consuming when n is large
- Turn to parallel solution!

Parallel Implementation

University at Buffalo
The State University of New York

Part of Implementation Detail

- The computation of KWII for all attribute pairs is evenly distributed across all the processors

```
int pairs_per_node=(attr_num)*(attr_num-1)/(2*size) +1;
for(int attr1=0;attr1<attr_num;attr1++)
{
        for(int attr2=attr1+1;attr2<attr_num;attr2++)
        {
            count_current=(2*attr_num-attr1)*attr1/2+attr2-attr1;
            //decide whether the KWII computation of current pair is assigned to this node or not
            if( count_current>= (pairs_per_node*rank +1) && count_current<= (pairs_per_node*(rank +1)))
            {
            printf("attr1 is: %d, attr2 is: %d, count_current is: %d, rank is: %d \n",attr1,attr2,count_current,rank);
                kwii.kwii(D,sample_num,v);
            }
    }
}
    University at Buffalo
    The State University of New York
```


Part of Implementation Detail

- Each processor picks up the attribute pair with the local highest KWII values and send it to P_{0}
- Define a derived data types Result using triplet of (int, int, double) to store the results of attribute pair and KWII values

```
MPI_Datatype myresult,old_types[2]={MPI_INT,MPI_DOUBLE};
MPI_Aint indices[2];
int blocklens[2]={2,1};
MPI_Address(&r,&indices[0]);
MPI_Address(&r.kwii,&indices[1]);
indices[1] -= indices[0];indices[0]=0;
MPI_Type_struct(2,blocklens,indices,old_types,&myresult);
MPI_Type_commit(&myresult);
MPI_Type_free(&myresult);
```

- P_{0} receives the Result from all other processors and picks up the one with the highest KWII value as the global highly interacted attribute pair

The State University of New York

Parallel Running Time

University at Buffalo
The State University of New York
\# of attributes = 5000, \# of samples $=1000$

Parallel Speedup

I he sate Universiry of ivew rork
$\#$ of attributes $=5000, \#$ of samples $=1000$

Parallel Efficiency

The State University of New York
$\#$ of attributes $=5000, \#$ of samples $=1000$

Parallel Speedup VS Dataset Size

Ur
The State University of New York

Running Time VS Dataset Size

\# of nodes = 128
\# of samples $=1000$

\# of nodes $=128$
\# of attributes = 1000

University at Buffalo
The State University of New York

Thank you!

