
Jianmei Yang
Dec 9th, 2010

Parallel Implementation of Mining
Highly Interacted Attribute Pairs

CSE633 Parallel Algorithms, Fall 2010
Advisor: Russ Miller

Interaction Mining
For two attribute variables X1 and X2 and a class variable Y,
when relationship between X1 and Y depends on X2 , X1 and X2
are said to be interact.
Interactions are outcomes that occur when all the
variables are observed together
• Interaction between two variables exists when the joint effect

of both is different from that obtained by additively combining
the individual effects.

Different interactions: independence, synergy,
redundancy.

Interaction Mining using
Information Theory

e.g. KWII (A;B;C) = - H(A) – H(B) – H(C) + H(AB) + H(AC) + H(BC)
- H(ABC)

KWII : Amount of information present in a set of variables,
which is not present in any subset of the variables.

• For set of variables S = { X1; X2;…, XK }

∑
⊆

−−≡
ST

TS THSKWII)()1()(\

∑ ==−=
x

iii xXpxXpXH))((log)()(2

Entropy

Let ω denote the set of all random variables :
ω = { X1 ; X2 ;… Xi ; … ; XN }.

Xi : A random variable representing an attribute or class label

Experiment Setting

Input: Data set of n attribute variables and class
variable, number of sample is m
Computation: Compute the KWII values for all
possible attribute pairs
• for N attributes, # of attribute pairs will be n*(n-1)/2

Output: Attribute pairs with highest KWII value,
which is the most significant interacted pairs
Sequential running time: O(n2m)
• Can be very time consuming when n is large
• Turn to parallel solution!

Parallel Implementation

Part of Implementation Detail

The computation of KWII for all attribute pairs is evenly
distributed across all the processors
int pairs_per_node=(attr_num)*(attr_num-1)/(2*size) +1;

⋯⋯ ⋯⋯

for(int attr1=0;attr1<attr_num;attr1++)
{

for(int attr2=attr1+1;attr2<attr_num;attr2++)
{

count_current=(2*attr_num-attr1)*attr1/2+attr2-attr1;
//decide whether the KWII computation of current pair is assigned to this node or not
if(count_current>= (pairs_per_node*rank +1) && count_current<= (pairs_per_node*(rank +1)))
{

printf("attr1 is: %d, attr2 is: %d, count_current is: %d, rank is: %d \n",attr1,attr2,count_current,rank);

kwii.kwii(D,sample_num,v);
⋯⋯

}
}

}

Part of Implementation Detail

Each processor picks up the attribute pair with the
local highest KWII values and send it to P0
• Define a derived data types Result using triplet of (int, int,

double) to store the results of attribute pair and KWII values
MPI_Datatype myresult,old_types[2]={MPI_INT,MPI_DOUBLE};
MPI_Aint indices[2];
int blocklens[2]={2,1};
MPI_Address(&r,&indices[0]);
MPI_Address(&r.kwii,&indices[1]);
indices[1] -= indices[0];indices[0]=0;
MPI_Type_struct(2,blocklens,indices,old_types,&myresult);
MPI_Type_commit(&myresult);
⋯⋯⋯⋯⋯⋯

MPI_Type_free(&myresult);

P0 receives the Result from all other processors and
picks up the one with the highest KWII value as the
global highly interacted attribute pair

Parallel Running Time

of attributes = 5000, # of samples = 1000

Parallel Speedup

of attributes = 5000, # of samples = 1000

Parallel Efficiency

of attributes = 5000, # of samples = 1000

E(p) = T(S) /(p × T(P))

Parallel Speedup VS Dataset Size

Running Time VS Dataset Size

of nodes = 128
of samples = 1000

of nodes = 128
of attributes = 1000

Thank you!

