
CSE 633 Parallel Algorithms Fall 2010
Computer Science and Engineering

University at Buffalo

John Longanecker
Parallel Computing with Browsers

Bin Packing Edition
November 4th, 2010



Itinerary

• Description of the browser
• Advantages
• Disadvantages
• How I plan to harness it
• Packing Algorithm
• Technologies used
• Results
• Scheduling



Imagine..
• Nearly 2 Billion computes worth of idle CPU Time

• Huge Potential



Browsers



Browsers

• HTML – Markup Language
• HTML is not a programming language
• One native scripting language JavaScript
• Standards exists but not followed well



Web Architecture

• Server side
• Client side
• Client enters website into the browser
• Browser sends a request to the server
• Server sends the information to the browser
• Browser receives the information



How Can We
Use this?



How Can We Use This?

• The client visits a web page
• Server sends the client instructions
• The client side processes instructions with

JavaScript
• Client sends back answers to the web server



Additional Information

• Browsers are not made to do heavy
computations

• In fact they are made to stop heavy
computations

• Browsers become unresponsive
• JavaScript is single threaded



Browsers Stop Heavy Computation



Web Workers



Disadvantages of this Model

• Web Workers are new
• Not widely supported
• Internet Speed
• Potential loss of computed results
• JavaScript is Slow
• Not good for real-time problem solving
• Not dependable



Advantages of this Model

• Multi-Platform
• Easy to Use
• No installation required just a browser
• No installation
• JavaScript is getting faster
• Applications moving to browser
• Could work on local network
• Browsers to support hardware acceleration



How Am I
Going to
Use This?



Bin Packing



Packing Algorithm

http://www.blackpawn.com/texts/lightmaps/default.html



Bin Packing

• Big bag of 3D boxes
• Client will only see 2 dimensions
• Client will get a bunch of boxes
• Leftovers get sent back
• Results sent back to server
• Server will see all 3 Dimensions
• Server will optimize for Height (3rd dimension)



Data I am Using

• Unit: pixels
• Client level size: 640 x 480
• Box dimensions range from 1 to 8
• Boxes are randomly generated
• Probability is the same for all sizes

(Example 8 is as likely to be picked as 1)



Technologies Used

• Server Side: PHP, MySQL (shared hosting)
• Client Side: JavaScript (Chrome, Firefox)
• Server Side: Why PHP and MySQL?
• Client Side Why not Java or Flash?



Problems: Height of Boxes Range

Pictured above is one level (what a client gets) from the side.
We see the 3rd dimension. Clients only sees 2 Dimensions.



Problems: Client Is Only Looking at
2-Dimensions

Pictured above is one level (what a client gets). Here we
see a tightly packed level that the client has packed.



Optimizing For 3 Dimensions

• Sort boxes so that the 3rd dimension is the
smallest side (height)

• Sort the boxes in the database query
• Sort by the x value on the client side



Results



Scheduling

• Client receives a unique identifier
• The client checks out 16,000 boxes
• Boxes that have not been checked back in 3

minutes get put back into the pool
• If the client refreshed their page within the 3

minute window, they get the same set of boxes
• Each box has its own row in the database
• Results set is written back to the database
• Boxes are now flagged as being used and can

never be checked out again



Thank You For Your Time

Contact Info:
johnlonganecker@gmail.com

http://www.johnlonganecker.com



References

• Packing Light Maps Algorithm:
http://www.blackpawn.com/texts/lightmaps/default.html

• Bin Packing with JavaScript
http://pollinimini.net/blog/rectangle-packing/


