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Motivation

Cis-Regulatory Modules (CRMs) are segments of an organism’s DNA
that regulates the expression of certain developmental traits during
that organism’s lifecycle.

The REDfly project (redfly.ccr.buffalo.edu), among other things,
contains the largest database of fruit fly (Drosophila melanogaster)
CRMs.

As you probably guessed, discovering CRMs is hard, especially when
we do not know where to look. Inferred CRMs (iCRMs), which are
inferred from known CRMs (hence the name), are “guesses” at where
potential CRMs may be located. Scientists use them to help narrow
down the segments of the DNA to focus on during experiments.
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Motivation (cont’d)

iCRMs are the regions where two or more CRMs overlap (actually,
there is a bit more to it, but this description is sufficient for our
purposes today).

As an example, the following is a (randomized) nucleic acid
sequence of length 25, and five (fictional) CRMs:

gtgtccctgggctgctgcacaggag
gtgtccc caca

ccctggg gcacaggag
gggctgctgcaca

The maximal overlaps would be ccc, ggg and caca; those are the
iCRMs (more or less).
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The Problem in More Formal Terms

Given a set S = {⟨l0, r0⟩, ⟨l1, r1⟩, . . . , ⟨ln, rn⟩} of n segments, find a set
of segments that maximally overlaps all segments ∈ S.

As an example derived from the previous slide, let the set of
intervals be {⟨0, 6⟩, ⟨4, 10⟩, ⟨8, 20⟩ ⟨16, 24⟩, ⟨17, 20⟩}. From this set, the
expected output would be {⟨4, 6⟩, ⟨8, 10⟩, ⟨17, 20⟩}.

3



The Algorithm at a High Level

The problem, at a high level, is a slightly more complicated version
of the Maximal Overlapping Point problem (described in Algorithms
Sequential and Parallel: A Unified Approach, 3rd Ed., by Russ Miller &
Laurence Boxer, pp. 195 - 196).

Assume that we are given the endpoints as two arrays:
E = {e1, e2, . . . , en} containing all endpoints sorted in ascending
order, and O = {o1,o2, . . . ,on}, where oi ∈ {1,−1}, consisting of
‘operands’ representing the orientations ∀e ∈ E – that is, operand oi
is the orientation of endpoint ei and equals 1 if ei is a starting
endpoint, or −1 otherwise. The algorithm consists of two parts:

1. Calculate the prefix sums ∀o ∈ O; let this be an array
P = {p1,p2, . . . ,pn}.

2. Find all local maximums ∈ P.

If pi is a local maximum, then segment ⟨ei, ei+1⟩ is a maximal overlap.
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The Algorithm at a High Level (cont’d)

An example:

endpoint operand prefix sum

0 1 1
4 1 2 ←−
6 -1 1
8 1 2 ←−

10 -1 1
16 1 2
17 1 3 ←−
20 -1 2
20 -1 1
24 -1 0

From the above table, we can see that segments ⟨4, 6⟩, ⟨8, 10⟩ and
⟨17, 20⟩ are the maximal overlaps.
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The Sequential Algorithm

Prefix Sum
p1 ← o1
for i← 2 to n do
pi ← pi−1 + oi

end for

Local Maximums
for i← 2 to n− 1 do
if pi−1 < pi > pi+1 then
pi is a local maximum

end if
end for

The running time is Θ(n) + Θ(n) ≡ Θ(n).
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Sequential Algorithm Running Times
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The Parallel Algorithm

The parallel prefix sum algorithm is described in Sequential and
Parallel Algorithms, pp. 175 - 178.

The local maximums algorithm makes use of the result of the prefix
sum algorithm and is similarly calculated in parallel. The first and
last elements of each processor’s partition is gathered and scattered
so that each processor receives its predecessor’s last element and
its successor’s first element; this is so the processor can determine
whether its first and/or last element is a local maximum.

Intuitively, the running time is Θ(n/p) +Θ(n/p) ≡ Θ(n/p), where p is
the number of processors.

Alternatively, the running time is Θ(n/ lg n), when p = lg n.
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The Parallel Algorithm (cont’d)

An example via a walk-through with 2 processors:

initial 1 1 -1 1 -1 1 1 -1 -1 -1

scatter 1 1 -1 1 -1 1 1 -1 -1 -1
prefix sum 1 2 1 2 1 1 2 1 0 -1

gather 1 -1
prefix sum 1 0

scatter 0 1
fix 1 2 1 2 1 2 3 2 1 0

gather 1 1 2 0

scatter 0 2 1 0
local maximums 1 2 1 2 1 2 3 2 1 0

↓ ↓ ↓
0 4 6 8 10 16 17 20 20 24
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Parallel Algorithm Running Times
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Parallel Algorithm Speedup
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Parallel Algorithm Running Times (cont’d)

n = 10× 109

p t

8 67.189068
16 36.584433
32 22.646106
64 17.715798

128 13.886721
256 8.842507 0 100 200

20

40

60

Processors

Ti
m
e
(in

se
co

nd
s)

12



Parallel Algorithm Speedup (cont’d)
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Lessons Learned

• Not All Nodes Are Created Equal: I initially set the minimum
RAM per node to 24 GB. However, I ran into intermittent failures
and strange timing spikes. Reviewing the cluster details on the
CCR webpage, I noticed that the nodes with 24 GB of RAM are
part of a older group of servers. Bumping the minimum RAM to
48 GB resolved my issues.

• Why I Started With 8 Nodes: I initially planned to run the
parallel algorithm on 2 and 4 nodes as well, however,
MPI_Scatter(8) and MPI_Gather(8) takes an int rather
than a size_t as the size arguments. Oops.

• Integer Troubles: Or how I learned to stop worrying and love
stdint.h. I was initially using unsigned for everything. An
unsigned can hold up to approximately 4.2 billion values. What
could go wrong? As is obvious in hindsight, the size of the
dataset can be up to 10 billion!
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Future Work

• The work presented today gets us only the maximal overlapping
segments. We actually also want the component segments
themselves. This is easy to do sequentially in O(n2) time, but I
am confident that this is an area that would also benefit from
parallelization.

• Remember when I said my description of an iCRM was sufficient
for our purposes today? Well, an additional requirement for an
iCRM is that the intersection of all overlapping CRMs’ regulated
expressions does not equal ∅. So I hope to be able to devise an
efficient algorithm for finding all maximal overlaps which also
allows for special conditions on whether two segments overlap.
This is a much harder problem!
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