Calculation of Maximal Overlaps

A look at a parallel algorithm and its running time

John Rivera
Prof. Russ Miller
May 9, 2019
CSE 633 - Parallel Algorithms
SUNY The University at Buffalo

Motivation

Cis-Regulatory Modules (CRMs) are segments of an organism's DNA that regulates the expression of certain developmental traits during that organism's lifecycle.

The REDfly project (redfly.ccr.buffalo.edu), among other things, contains the largest database of fruit fly (Drosophila melanogaster) CRMs.

As you probably guessed, discovering CRMs is hard, especially when we do not know where to look. Inferred CRMs (iCRMs), which are inferred from known CRMs (hence the name), are "guesses" at where potential CRMs may be located. Scientists use them to help narrow down the segments of the DNA to focus on during experiments.

Motivation (cont'd)

iCRMs are the regions where two or more CRMs overlap (actually, there is a bit more to it, but this description is sufficient for our purposes today).
As an example, the following is a (randomized) nucleic acid sequence of length 25 , and five (fictional) CRMs:
gtgtccctgggctgctgcacaggag
gtgtccc caca
ccctggg gcacaggag
gggctgctgcaca

The maximal overlaps would be ccc, ggg and caca; those are the iCRMs (more or less).

The Problem in More Formal Terms

Given a set $S=\left\{\left\langle l_{0}, r_{0}\right\rangle,\left\langle l_{1}, r_{1}\right\rangle, \ldots,\left\langle l_{n}, r_{n}\right\rangle\right\}$ of n segments, find a set of segments that maximally overlaps all segments $\in S$.

As an example derived from the previous slide, let the set of intervals be $\{\langle 0,6\rangle,\langle 4,10\rangle,\langle 8,20\rangle\langle 16,24\rangle,\langle 17,20\rangle\}$. From this set, the expected output would be $\{\langle 4,6\rangle,\langle 8,10\rangle,\langle 17,20\rangle\}$.

The Algorithm at a High Level

The problem, at a high level, is a slightly more complicated version of the Maximal Overlapping Point problem (described in Algorithms Sequential and Parallel: A Unified Approach, 3rd Ed., by Russ Miller \& Laurence Boxer, pp. 195-196).

Assume that we are given the endpoints as two arrays:
$E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ containing all endpoints sorted in ascending order, and $O=\left\{0_{1}, o_{2}, \ldots, o_{n}\right\}$, where $o_{i} \in\{1,-1\}$, consisting of 'operands' representing the orientations $\forall e \in E$ - that is, operand o_{i} is the orientation of endpoint e_{i} and equals 1 if e_{i} is a starting endpoint, or -1 otherwise. The algorithm consists of two parts:

1. Calculate the prefix sums $\forall 0 \in O$; let this be an array

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} .
$$

2. Find all local maximums $\in P$.

If p_{i} is a local maximum, then segment $\left\langle e_{i}, e_{i+1}\right\rangle$ is a maximal overlap.

The Algorithm at a High Level (cont’d)

An example:

endpoint	operand	prefix sum	
0	1	1	
4	1	2	\longleftarrow
6	-1	1	
8	1	2	\longleftarrow
10	-1	1	
16	1	2	
17	1	3	\longleftarrow
20	-1	2	
20	-1	1	
24	-1	0	

From the above table, we can see that segments $\langle 4,6\rangle,\langle 8,10\rangle$ and $\langle 17,20\rangle$ are the maximal overlaps.

The Sequential Algorithm

```
Prefix Sum
    p
    for }i\leftarrow2\mathrm{ to n do
        pi}\leftarrow\mp@subsup{p}{i-1}{}+\mp@subsup{o}{i}{
    end for
Local Maximums
    fori
        if pi-1}<\mp@subsup{p}{i}{}>\mp@subsup{p}{i+1}{}\mathrm{ then
        pi is a local maximum
        end if
    end for
```

The running time is $\Theta(n)+\Theta(n) \equiv \Theta(n)$.

Sequential Algorithm Running Times

$p=1$	
n	t
2×10^{9}	27.06
4×10^{9}	55.90
6×10^{9}	91.49
8×10^{9}	129.82
10×10^{9}	174.76

The Parallel Algorithm

The parallel prefix sum algorithm is described in Sequential and Parallel Algorithms, pp. 175-178.

The local maximums algorithm makes use of the result of the prefix sum algorithm and is similarly calculated in parallel. The first and last elements of each processor's partition is gathered and scattered so that each processor receives its predecessor's last element and its successor's first element; this is so the processor can determine whether its first and/or last element is a local maximum.

Intuitively, the running time is $\Theta(n / p)+\Theta(n / p) \equiv \Theta(n / p)$, where p is the number of processors.

Alternatively, the running time is $\Theta(n / \lg n)$, when $p=\lg n$.

The Parallel Algorithm (cont'd)

An example via a walk-through with 2 processors:

initial	1	1	-1	1	-1	1	1	-1	-1	-1
scatter	1	1	-1	1	-1	1	1	-1	-1	-1
prefix sum	1	2	1	2	1	1	2	1	0	-1
gather					1					-1
prefix sum					1					0
scatter					0					1
fix	1	2	1	2	1	2	3	2	1	0
gather	1				1	2				0
scatter	0				2	1				0
local maximums	1	2	1	2	1	2	3	2	1	0
		\downarrow		\downarrow			\downarrow			
	0	4	6	8	10	16	17	20	20	24

Parallel Algorithm Running Times

$n=10 \times 10^{3}$	
p	t
8	0.000212
16	0.000186
32	0.000255
64	0.000365
128	0.000721
256	0.001503

Parallel Algorithm Speedup

$n=10 \times 10^{3}$	
p	s
8	0.004717
16	0.005376
32	0.003922
64	0.002740
128	0.001387
256	0.000665

Parallel Algorithm Running Times (cont'd)

$n=10 \times 10^{9}$	
p	t
8	67.189068
16	36.584433
32	22.646106
64	17.715798
128	13.886721
256	8.842507

Parallel Algorithm Speedup (cont'd)

$n=10 \times 10^{9}$	
p	s
8	2.601018
16	4.776895
32	7.716999
64	9.864642
128	12.584684
256	19.763625

Lessons Learned

- Not All Nodes Are Created Equal: I initially set the minimum RAM per node to 24 GB . However, I ran into intermittent failures and strange timing spikes. Reviewing the cluster details on the CCR webpage, I noticed that the nodes with 24 GB of RAM are part of a older group of servers. Bumping the minimum RAM to 48 GB resolved my issues.
- Why I Started With 8 Nodes: I initially planned to run the parallel algorithm on 2 and 4 nodes as well, however, MPI_Scatter (8) and MPI_Gather (8) takes an int rather than a size_t as the size arguments. Oops.
- Integer Troubles: Or how I learned to stop worrying and love stdint.h. I was initially using unsigned for everything. An unsigned can hold up to approximately 4.2 billion values. What could go wrong? As is obvious in hindsight, the size of the dataset can be up to 10 billion!

Future Work

- The work presented today gets us only the maximal overlapping segments. We actually also want the component segments themselves. This is easy to do sequentially in $O\left(n^{2}\right)$ time, but I am confident that this is an area that would also benefit from parallelization.
- Remember when I said my description of an iCRM was sufficient for our purposes today? Well, an additional requirement for an iCRM is that the intersection of all overlapping CRMs' regulated expressions does not equal \emptyset. So I hope to be able to devise an efficient algorithm for finding all maximal overlaps which also allows for special conditions on whether two segments overlap. This is a much harder problem!

References

- Rivera, John, Keränen, Soile V. E., Gallo, Steven M. and Halfon, Marc S. (2018). REDfly: the transcriptional regulatory element database for Drosophila. Nucleic Acids Res.; doi:10.1093/nar/gky957
- Miller, Russ and Boxer, Lawrence. (2013). Sequential and Parallel Algorithms: A Unified Approach, 3rd Ed. Cengage Learning.
- Academic Compute Cluster (UB-HPC). Center for Computational Research. http://www.buffalo.edu/ccr/support/ research_facilities/general_compute.html

