
NA VEC
SCATTERS IN
PETSC
Joseph Pusztay
Based on: https://arxiv.org/pdf/
1612.08060.pdf

https://arxiv.org/pdf/1612.08060.pdf
https://arxiv.org/pdf/1612.08060.pdf
https://arxiv.org/pdf/1612.08060.pdf

3

Overview
- What is PETSc?

- What is multigrid, and why does it matter?

- Communication in PETSc, and examples

- The Node Aware Algorithm

- Implementation Changes

- Preliminary Results

- Future Plans for this Project

Reference Work: https://arxiv.org/pdf/1612.08060.pdf

https://arxiv.org/pdf/1612.08060.pdf

4

The Portable Extensible Toolkit for Scientific Computing
• A library offering a collection of APIs and

data structures for scientific computation

• Includes non-linear solvers, finite
elements, a suite of preconditioners,
particle methods, time steppers, etc.

• Removes low level concerns from the
user

• A plethora on usage examples for the
various operations

Figure 1: Vlasov-Poisson Particle in Cell
Simulation for the Two-Stream Instability

problem

Benefits of PETSc
• Abstracted API layers remove parallelization concerns from the

user

• Mature code base

• Actively developed and maintained

• Wide spread utilization

• Open Source

• Cross platform

5

High Level MG (an extremely brief introduction)
• We would like to solve some PDE on a grid, but:

• Grids that are too coarse may lose information about the problem,
resulting in extraneous errors

• Refining the grid too much becomes extremely expensive
computationally

• Multigrid handles both of these issues by handling the grid at
various levels of coarseness

• The goal is to catch long wave and short wave errors (High/
Low frequency waves in the solution)

• This involves many communications between segments of the grid

Strong scaling for PETSc SNES EX5
using 2 Skylake nodes. This example

models solid fuel ignition in 2D.
Observed is the strong scaling of

multigrid and block jacobi
preconditioners

PETSc Vec Objects
• Vec objects represent vectors and have mathematically relevant

operations defined

• Parallel Vec objects are able to be shared between nodes

• Vec Scatter/Gather operations depend on global indexing
over a compatible communicator

• Local to global index mapping is maintained to perform
parallel operations (Scatter)

NAPSpMV
• Sparse Matrix-Vector operations are found in various situations

(for example, MG)

• Node to node communications become heavy as processors
attempt to share information across nodes, resulting in large
communication overheads

• Reduce overhead by relying on the configuration of processors
within the nodes

• Change the communication from many to many (processors),
to one (processor) to many (nodes) and many (nodes) to one
(processor), then unpack communication within a node

where A is a sparse N ⇥ N matrix and v is a dense N -dimensional vector. In
parallel, the sparse system is often distributed across np processes such that each
process holds a contiguous block of rows from the matrix A, and equivalent rows
from the vectors v and w, as shown in Figure 1. A common approach is to also
split the rows of A on a single process into two groups: an on-process block,
containing the columns of the matrix that correspond to vector values stored
locally, and an o↵-process block, containing matrix non-zeros that are associated
with vector values that are stored on non-local processes. Therefore, non-zeros
in the o↵-process block of the matrix require vector values to be communicated
during each SpMV.

w A v

P0

P1

P2

P3

Figure 1: A matrix partitioned across four processes, where each process stores two rows of the

matrix, and the equivalent rows of each vector. The on-process block of each matrix partition

is represented by solid squares, while the o↵-process block is represented by patterned entries.

The SpMV operation lacks parallel scalability due to large costs associated
with communication, specifically in the strong scaling limit of a few rows per
process. Increasing the number of processes that a matrix is distributed across
increases the number of columns in the o↵-process blocks, yielding a growth in
communication.

Figure 2 shows the percentage of time spent communicating during a SpMV
operation for two large matrices from the SuiteSparse matrix collection at scales
varying from 50 000 to 500 000 non-zeros per process [1]. The results show that
the communication time dominates the computation as the number of processes
is increased, thus decreasing the scalability.

Machine topology plays an important role in the cost of communication [2].
Multicore distributed systems present new challenges in communication as the
bandwidth is limited while the number of cores participating in communication
increases [3]. Injection limits and network contention are significant roadblocks
in the SpMV operation, motivating the need for SpMV algorithms that take
advantage of the machine topology. The focus of the approach developed in this
paper is to use the node-processor hierarchy to more e�ciently map communica-
tion, leading to notable reductions in SpMV costs on modern HPC systems for
a range of sparse matrix patterns. Throughout this paper, the term node aware

refers to knowledge of the mapping of processes to physical nodes, although other

2

Figure from: https://arxiv.org/pdf/1612.08060.pdf

https://arxiv.org/pdf/1612.08060.pdf

NAPSpMV Algorithm

(p, n)
(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(s
,n

)

(0, 0) {} {1} — — — —
(1, 0) {} {} — — — —
(0, 1) — — {} {3} — —
(1, 1) — — {} {} — —
(0, 2) — — — — {} {}
(1, 2) — — — — {} {}

Table 15: Global vector indices that must be communicated between processes local to each

node n in Example 2.1. Each column contains the indices of values sent from (p, n) to (q, n).
Note: dashes (—) throughout the table represent processes on separate nodes, which cannot

communicate during intra-node communication.

Algorithm 2: local comm

Input: (p, n) : tuple describing local rank and
node of process

v|R((p,n)): rows of input vector v local to
process (p, n)

locality: locality of input and output data

Output: `recv: values that rank (p, n) receives from
other processes

// Initialize sends
for (s, n) 2 L((p, n), locality) do

for i 2 J ((p, n), (s, n), locality) do
`send v|R((p,n))i

MPI Isend(`send, . . . , (s, n), . . .)

// Initialize receives
`recv ;
for (s, n) s.t. (p, n) 2 L((s, n), locality) do

MPI Irecv(`recv, . . . , (s, n), . . .)

// Complete sends and receives
MPI Waitall

many slight variations to the algorithm are possible. The fully local commu-
nication has no dependencies, and can be performed anytime before calling
local spmv(Aon node, b`!`). Furthermore, the function local spmv(Aon process, v|R)
has no communication requirements and, hence, can be performed at any point
in the algorithm.

17

Algorithm 3: NAPSpMV

Input: (p, n): tuple describing local rank and node
of process

A|R: rows of matrix A local to process (p, n)
v|R: rows of input vector v local to process

(p, n)

Output: w|R: rows of output vector w Av,
local to process (p, n)

Aon process = on process(A|R)
Aon node = on node(A|R)
Ao↵ node = off node(A|R)

b`!` local comm((p, n), v|R, (on node! on node))
b`!n` local comm((p, n), v|R, (on node! off node))

// Initialize sends
for (q,m) 2 G((p, n)) do

for i 2 I((p, n), (q,m)) do
gsend bi`!n`

MPI Isend(gsend, . . . , (q,m), . . .)

// Initialize receives
grecv ;
for (q,m) s.t. (p, n) 2 G((q,m)) do

MPI Irecv(grecv, . . . , (q,m), . . .)

// Serial SpMV for local values
local spmv(Aon process, v|R)

// Serial SpMv for on-node values
local spmv(Aon node, b`!`)

// Complete sends and receives
MPI Waitall

bn`!` local comm((p, n), v|R, (off node! on node))

// Serial SpMV for off-node values
local spmv(Ao↵ node, bn`!`)

18

* https://arxiv.org/pdf/1612.08060.pdf

*

*

https://arxiv.org/pdf/1612.08060.pdf

Modifications to the Algorithm
• Petsc global index ordering must be consistent and maintained

• Separate communicator splits would require additional layers of
translation, a global ordering must still be maintained

• Hard code node mapping based on specific run time environment for simplicity

• Decrease set up time

• Unnecessary for larger problems (We are running on a small problem)

• Introduced a new VecScatter type to PETSc (~+5000 lines of code)

• PETSc block size dependent definitions for packing and unpacking sends
and receive buffers

• On creation of a VecScatter context, maintain global ordering but perform
MPI_Isend and MPI_Ireceive translations to pack buffers for message
passing and routing

• Will this get us our performance gains?

Steps
• Configure a context for VecScatter

• Compute expected number of messages passed between processors on
the node, create sends/receives

• Compute expected number of messages passed in a buffer between a
node, create sends/receives

• Configure message Packing for internode/intranode communication

• VecScatter

• Send messages on the node, off node communication goes to a process
to pack buffer

• Node receives message from off node process, unpacks buffer and
distributes between the processes

• Vector Operations are performed and Vector update by backwards scatter.

Scaling: 1PPN
• Build petsc environment with Intel 2019 compilers and intel MPI

(versions 2019.5)

• Build PETSc SNES ex5

• Execute on 1-32 nodes

• Expected results for this configuration?

• Yes

Scatter
type

1 nodes 2 nodes 4 nodes 8 nodes 16 32

Standard 1.027E+02 7.8112E+01 6.1827E+01 5.2742E+01 4.8480E+01 4.7059E+01
NA 1.0332E+02 7.877E+01 6.1787E+01 5.2786E+01 4.8628E+01 4.7490E+01

Conclusion and future work:
• What do we expect from Node Aware on this problem?

• Comparable performance

• Runs are short and may not fully resolve the effects

• Does this problem entail enough communication overhead to test the algorithm?

• Future Plans:

• Send/Receive configurations need some more debugging for more extensible
configurations to support more/arbitrary processes per node, and have been
rethought since their initial implementation regardless

• Final library will configure VecScatter contexts from a config file that contains
cluster topology for best performance (current thoughts)

• Increase portability from system to system (aforementioned config files)

• Plenty of further testing/tweaking! (longer problems, larger problems, more
communicationally expensive problems, etc.)

• And finally, merge request into PETSc

Strong scaling up to 32 nodes with
24 processors per node with
multigrid preconditioner. *NA Vec
Scatter not pictured

QUESTIONS

