NA VEC
SCATTERS IN

PETSC

Joseph Pusztay

Based on: https://arxiv.org/pdf/
1612.08060.pdf

% University at Buffalo The State University of New York

https://arxiv.org/pdf/1612.08060.pdf
https://arxiv.org/pdf/1612.08060.pdf
https://arxiv.org/pdf/1612.08060.pdf

% University at Buffalo The State University of New York

Overview

- What is PETSc?

- What is multigrid, and why does it matter?
- Communication in PETSc, and examples
- The Node Aware Algorithm

- Implementation Changes

- Preliminary Results

- Future Plans for this Project

Reference Work: https://arxiv.ora/pdf/1612.08060.pdf

https://arxiv.org/pdf/1612.08060.pdf

% University at Buffalo The State University of New York

The Portable Extensible Toolkit for Scientific Computing

Particle Phase

* Alibrary offering a collection of APIs and 3.0 : : :

data structures for scientific computation

* |ncludes non-linear solvers, finite

elements, a suite of preconditioners,
particle methods, time steppers, etc.

* Removes low level concerns from the
user

» A plethora on usage examples for the

various operations _ _ y &
Figure 1: Vlasov-Poisson Particle in Cell

Simulation for the Two-Stream Instability
problem

% University at Buffalo The State University of New York

Benefits of PETSc

e Abstracted API layers remove parallelization concerns from the
user

e Mature code base

e Actively developed and maintained
e Wide spread utilization

 Open Source

e Cross platform

% University at Buffalo The State University of New York

High Level MG (an extremely brief introduction)

We would like to solve some PDE on a grid, but:

Grids that are too coarse may lose information about the problem,
resulting in extraneous errors

Refining the grid too much becomes extremely expensive
computationally

Multigrid handles both of these issues by handling the grid at
various levels of coarseness

* The goal is to catch long wave and short wave errors (High/
Low frequency waves in the solution)

This involves many communications between segments of the grid

Strong Scaling for SNES ex5

3.5 1 — bjacobi
— mg

3.0 A

2.5 1

2.0 1

1.5 1

1.0 1

T T T T T
40 60 80 100 120
No. Cores

Strong scaling for PETSc SNES EX5
using 2 Skylake nodes. This example
models solid fuel ignition in 2D.
Observed is the strong scaling of
multigrid and block jacobi
preconditioners

% University at Buffalo The State University of New York

PETSc Vec Objects

e Vec objects represent vectors and have mathematically relevant
operations defined

e Parallel Vec objects are able to be shared between nodes

e Vec Scatter/Gather operations depend on global indexing
over a compatible communicator

e Local to global index mapping is maintained to perform
parallel operations (Scatter)

% University at Buffalo The State University of New York

Figure from: https://arxiv.org/pdf/1612.08060.pdf

NAPSpMV

* Sparse Matrix-Vector operations are found in various situations
(for example, MG)

* Node to node communications become heavy as processors
attempt to share information across nodes, resulting in large
communication overheads

* Reduce overhead by relying on the configuration of processors
within the nodes

Figure 1: A matrix partitioned across four processes, where each process stores two rows of the

¢ C h an g e the commun ICatI on from ma ny to ma ny (pro Cessors), matrix, and the equivalent rows of each vector. The on-process block of each matrix partition

is represented by solid squares, while the off-process block is represented by patterned entries.

to one (processor) to many (nodes) and many (nodes) to one
(processor), then unpack communication within a node

https://arxiv.org/pdf/1612.08060.pdf

% University at Buffalo The State University of New York

Algorithm 3: NAPSpMV

Input: (p,n): tuple describing local rank and node

NAPSpMV Algorithm P

v|R: rows of input vector v local to process
(p, m)
Algorithm 2: local_comm * Output: w|R: rows of output vector w < Av,
- local to process (p, n)
Input: (p,n): tuple describing local rank and
node of process Aon_process = on_process(A|R)
V|R((pn)): Tows of input vector v local to Aon_node = on_node(A|R)

process (p,n) Aot node = off node(A|R)

locality: locality of input and output data be_ss < local_comm((p,n), v[R, (on_node — on node))

bg—sne < Local_comm((p,n),v|R, (on-node — off node))
Output: {lreey: values that rank (p,n) receives from
other processes // Initialize sends
for (¢,m) € G((p,n)) do
for i € Z((p, n), (¢,m)) do

// Initialize sends | gsend < bl e
for (57 n) € 5((17, n)7 1ocalitY) do MPI Isend(gsend; - - -, (¢, m),...)
for i € J((p,n), (s,n),locality) do
L Lsend U|R((p,n))i // Initialize receives
MPI_Isend(Esend, ey (S, ’I’I,), ..) Grecv < 0

for (¢,m) s.t. (p,n) € G((¢,m)) do
| MPI_Irecv(grecv,---,(¢,m),...)
// Initialize receives
lroey — 0 // Serial SpMV for local values

for (s,n) s.t. (p,n) € L((s,n),locality) do Localspmv(Aon process, V[R)
| MPI_Irecv(lrecys---,(8,1n),...)

// Serial SpMv for on-node values
local_spmv(Aon node; be—se)
// Complete sends and receives py

. Complete sends and receives
MPI Waitall MPI_Waitall

bne—se < local_comm((p, n),v|R, (off node — on_node))

* https://arxiv.org/pdf/l612.08060 Ddf // Serial SpMV for off-node values

local spmv(Aoff node, One—e)

https://arxiv.org/pdf/1612.08060.pdf

% University at Buffalo The State University of New York

Modifications to the Algorithm

e Petsc global index ordering must be consistent and maintained

» Separate communicator splits would require additional layers of
translation, a global ordering must still be maintained

» Hard code node mapping based on specific run time environment for simplicity
e Decrease set up time
» Unnecessary for larger problems (We are running on a small problem)
 Introduced a new VecScatter type to PETSc (~+5000 lines of code)

» PETSc block size dependent definitions for packing and unpacking sends
and receive buffers

» On creation of a VecScatter context, maintain global ordering but perform
MPI_Isend and MPI_Ireceive translations to pack buffers for message
passing and routing

» Will this get us our performance gains?

% University at Buffalo The State University of New York

Steps

» Configure a context for VecScatter

» Compute expected number of messages passed between processors on
the node, create sends/receives

» Compute expected number of messages passed in a buffer between a
node, create sends/receives

» Configure message Packing for internode/intranode communication

e \/ecScatter

» Send messages on the node, off node communication goes to a process
to pack buffer

» Node receives message from off node process, unpacks buffer and
distributes between the processes

» Vector Operations are performed and Vector update by backwards scatter.

% University at Buffalo The State University of New York

°
S Call g ® 1 P P 22 Strong Scaling for Solid Fuel Ignition in PETSc

— allto all
— na

e Build petsc environment with Intel 2019 compilers and intel MPI
(versions 2019.5)

e Build PETSc SNES ex5
e Execute on 1-32 nodes

e Expected results for this configuration?

5 10 15 20 25 30 35

0
g YeS No. Nodes(Cores)

e R
type

EEL Il 1.027E+02 7.8112E+01 6.1827E+015.2742E+01 4.8480E+014.7059E+01
'S 1 .0332E+027.877E+01 6.1787E+015.2786E+014.8628E+014.7490E+01

% University at Buffalo The State University of New York

Conclusion and future work:

» What do we expect from Node Aware on this problem?
e Comparable performance
* Runs are short and may not fully resolve the effects
» Does this problem entail enough communication overhead to test the algorithm?
e Future Plans:

» Send/Receive configurations need some more debugging for more extensible
configurations to support more/arbitrary processes per node, and have been
rethought since their initial implementation regardless

» Final library will configure VecScatter contexts from a config file that contains
cluster topology for best performance (current thoughts)

 Increase portability from system to system (aforementioned config files)

e Plenty of further testing/tweaking! (longer problems, larger problems, more
communicationally expensive problems, etc.)

» And finally, merge request into PETSc

1.08

1.06

1.04}

102+

1.00
0

Strong Scaling for 24 PPN

— alltoall

é 1‘0 1I5 2‘0 2l5 3IO 35
No. Nodes
Strong scaling up to 32 nodes with
24 processors per node with

multigrid preconditioner. *NA Vec
Scatter not pictured

QUESTIONS

