
PARALLEL
IMPLEMENTATION OF
BITONIC SORT – USING
MPI
-Kadambare Jayandran
(kjayandr)

2

Sorting
• Arrange an unordered collection of items into a meaningful order.
• Efficient sorting is important for optimizing the efficiency of other algorithms

(such as search) that require input data to be in sorted lists. Sorting is also
often useful for canonicalizing data and for producing human-readable
output.

• Sorting can be comparison-based or non comparison-based.

• The fundamental operation of comparison-based sorting is
compare-exchange.

3

Why Parallelize?

• Sequential algo better time complexity eg:MergeSort is O(n*Log n),
Bitonic sort O(n Log ^2n)

• Parallel computing saves time, allowing the execution of applications in a
shorter wall-clock time.

• Solve Larger Problems in a short point of time. Compared to serial
computing, parallel computing is much better suited for modeling,
simulating and understanding complex, real-world phenomena.

4

Bitonic sort • A sequence a = (a1, a2, . . ., ap) of p numbers is

said to be bitonic if and only if • a1 ≤ a2 ≤ . . . ≤ ak≥ .
. . ≥ ap, for some k, 1 < k < p, or

• • a1 ≥ a2 ≥ . . . ≥ ak≤ . . . ≤ ap, for some k, 1 < k < p,

or

• ‘a’ can be split into two parts that can be

interchanged to give either of the cases.

• A sequence is bitonic if it monotonically increases

and then monotonically decreases, or if it can be
circularly shifted to monotonically increase and then
monotonically decrease.

5

Bitonic sort

6

Constant Data
CONSTANT DATA - 320000

Processes Time(secs)

2 0.066937

4 0.052204

8 0.037746

16 0.029035

32 0.017035

64 0.018455

128 0.014898

256 0.020217

7

Constant Number of Processes
Data Time(secs)

10000 0.001442

20000 0.001764

30000 0.0024

40000 0.003203

50000 0.003871

60000 0.003935

70000 0.004584

8

Constant Number of Processes
Data Processor Time(secs)

20000 2 0.004842

40000 4 0.007089

80000 8 0.009718

160000 16 0.013374

320000 32 0.01859

640000 64 0.034345

1280000 128 0.063585

9

Constant data for 1 million - 1 billion

10

Constant data - 1 million & 1 billion
No of Processors Time Elapsed (secs)

2
0.159068

4
0.127574

8
0.098923

16
0.075753

32
0.051997

64
0.048886

128
0.048964

256
0.065821

No of Processors Time Elapsed (secs)

2
160.213859

4
107.03612

8
75.726802

16
55.047718

32
40.765924

64
53.894162

128
68.790941

256
84.524898

11

Constant Num. of Processors -32

Datasize Time Elapsed(secs)

1000000 0.054629

2000000 0.100569

3000000 0.129495

4000000 0.161037

5000000 0.203386

6000000 0.222796

7000000 0.248393

12

Constant Data Per Processor

Number of Processors Time Elapsed(secs)

2 0.257144

4 0.341612

8 0.496994

16 0.730705

32 1.094706

64 3.169772

128 7.86138

256 19.538398

1 million data per processor

13

Conclusion
● There is a steady growth rate in the amount of time taken for execution when

the data per processor is constant.
● A similar trend is observed when the amount of data is increased but the

number of processor is constant.
● In the case of constant data and increased number of processors we see that

the least time is taken when we use 32 processors. This implies that though we
have more computational power, when the number of processors is too much
there is also communication overhead.

14

References
https://ubccr.freshdesk.com/support/solutions/folders/13000001591

https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiintro/ppframe.htm

https://en.wikipedia.org/wiki/Bitonic_sorter

https://en.wikipedia.org/wiki/Message_Passing_Interface

http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml#:~:text=MPI%20is%20a%
20library%20of,programs%20in%20C%20or%20Fortran77.&text=It%20is%20a%
20library%20that,exchange%20information%20among%20these%20processes

https://ubccr.freshdesk.com/support/solutions/folders/13000001591
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiintro/ppframe.htm
https://en.wikipedia.org/wiki/Bitonic_sorter
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml#:~:text=MPI%20is%20a%20library%20of,programs%20in%20C%20or%20Fortran77.&text=It%20is%20a%20library%20that,exchange%20information%20among%20these%20processes
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml#:~:text=MPI%20is%20a%20library%20of,programs%20in%20C%20or%20Fortran77.&text=It%20is%20a%20library%20that,exchange%20information%20among%20these%20processes
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml#:~:text=MPI%20is%20a%20library%20of,programs%20in%20C%20or%20Fortran77.&text=It%20is%20a%20library%20that,exchange%20information%20among%20these%20processes

