IMPLEMENTATION OF QUADRATIC SIEVE ALGORITHM USING MPI

By Kiran Kumar
CSE 633 Parallel Computing Fall 2011

About Quadratic Sieve

\square Quadratic sieve algorithm is used for factoring large composite numbers.
\square The mains steps in the algorithm :

1. Generating the factor base.
2. Generating polynomial
3. Sieving
4. Gaussian Elimination

Generating Factor Base

\square Factor base consists of sets of numbers which is quadratic residue modulo of the number which is to be factored i.e., which satisfies the below equation.

$$
n \equiv r^{2}(\bmod p),
$$

where $r=\operatorname{floor}(\operatorname{sqrt}(n))+k$
$k=1,2, \ldots$
$n \rightarrow$ integer to be factored
$p \rightarrow$ a prime number below a bound B

Generating Polynomial

\square We chose polynomial of type

$$
f(x)=A x^{2}+B x+c
$$

Where we chose A to be a square we chose $B \quad 0<=B<A$ such that B^{2} is congruent to $\mathrm{n} \bmod (\mathrm{A})$
And finally we chose C which satisfies $B^{2}-A C=n$
\square We can generate different polynomials by changing the values for A, B, C.

Sieving

\square This is the most time consuming step in the algorithm.
\square We solve the the polynomial $f(x)$ for each value of the factor base.
\square We loop through each element in factor base and check if $f(x)$ completely factors using the prime numbers within the bound.
\square If we find the $f(x)$ which completely factors, we save the exponents of the factors in a matrix and continue the loop. We need to find many relation because most of the times we get trivial solutions.
\square And finally Gaussian row reduction is applied on the exponent matrix and first non-trivial solution is given back as output.

Parallel Implementation

\square The master the nodes initializes the variables and waits for the clients to request for job.
\square The client node requests for n (the number to be factored) and then generates the factor base. Calculates the exponents A, B, C and generate the polynomial and starts sieving over the sieving interval.
\square If the client node finds a solution, it sends the value back to master node
\square After gathering the enough relations, the master node performs the Gaussian elimination and prints out the result and terminates the clients.

Results

$\square 2$ nodes with 8 cores in each node.
\square Input is 60 digit number

No Of Processors	Running Time(secs)
2	962
4	319
8	137
16	131
32	127
64	129

Results Contd..

2 nodes with 8 cores in each

Results contd..

$\square 2$ nodes with 16 cores each on one node.
\square Input is 60 digit number.

No Of Processors	Running Time(secs)
2	1113
4	367
8	160
16	75
32	37
64	39

Results contd...

2 nodes with $\mathbf{1 6}$ cores each

Results contd..

- 1 node with 32 cores on it.
\square Input is 60 digit number

No Of Processors	Running Time(secs)
2	1113
4	373
8	160
16	75
32	37
64	38

Results cond...

1 node with 32 cores

References

\square http://www.cs.virginia.edu/crab/QFS_Simple.pdf
\square http://www.math.leidenuniv.nl/~reinier/ant/ sieving.pdf

Questions?

