
Solving Convex Hull Problem in
Parallel

Anil Kumar

Ahmed Shayer Andalib

CSE 633 Spring 2014

Convex Hull: Formal Definition

• A set of planar points S is
convex if and only if for
every pair of points x, y ∈
S, the line segment xy is
contained in S.
– Let S be a set of n points in

the plane.

• The convex hull of S is
defined to be the smallest
convex polygon P
containing all n points of
S.

Solving The Convex Hull Problem

• A solution to the convex hull problem consists of
determining an ordered list of points of S that
define the boundary of the convex hull of S.

• This ordered list of points is referred to as hull(S).
Each point in hull(S) is called an extreme point of
the convex hull

• A pair of adjacent extreme points is referred to as
an edge of the convex hull

• We have implemented our algorithm for solving
Convex Hull in two dimensions.

Graham’s Scan

Divide and Conquer
• Let S be the input list of points

• Partition the point set S into two sets A
and B, where A consists of half the points
with the lowest x coordinates and B
consists of half of the points with the
highest x coordinates.

• Recursively compute Convex Hull
HA= Hull(A) and HB = Hull(B).

• Merge HA and HB: find the two edges (the
upper and lower common tangents).

– The upper common tangent can be
found in linear time by scanning
around the left hull in a clockwise
direction and around the right hull in
an anti-clockwise direction

– Similarly determine lower common
tangent

• The two tangents divide each hull into two
pieces. The edges belonging to one of
these pieces must be deleted.

Parallel Implementation – 1

• Algorithm – Divide and Conquer

• Architecture – Mesh of size n2 (n x n)

• Implementation:

1. Data Generation

2. Determination of local convex hulls

3. Merging the convex hulls

Parallel Implementation – 1

• Data generation:
– Each processing element (PE) will generate a fixed set of point

within a range of x – coordinates based on their assigned ranks
• Ensures that data is initially partitioned based on x – coordinates

• Local Convex Hulls:
– Each PE will compute it’s local convex hull using sequential

divide and conquer algorithm

• Merging the Local Convex Hulls:
– Perform a left – to – right row – based merge operation to

merge the hulls
– The rightmost column will perform a top – down column –

based merge operation to merge the hulls. Final Convex Hull will
reside in the bottom PE in the rightmost column

SIMULATION: MESH OF SIZE 16 (4 X 4)

Data Generation

PE1

PE13

PE9

PE5

PE2

PE14

PE10

PE6

PE3

PE15

PE11

PE7

PE4

PE16

PE12

PE8 Data Data Data Data

Data Data Data Data

Data Data Data Data

Data Data Data Data

Compute Local Hulls: Sequential Divide
and Conquer

PE1

PE13

PE9

PE5

PE2

PE14

PE10

PE6

PE3

PE15

PE11

PE7

PE4

PE16

PE12

PE8

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Merging Local Hulls

PE1

PE13

PE9

PE5

PE2

PE14

PE10

PE6

PE3

PE15

PE11

PE7

PE4

PE16

PE12

PE8

Send Local Hulls Receive Local Hulls

Merge Hulls

Merging Local Hulls

PE1

PE13

PE9

PE5

PE2

PE14

PE10

PE6

PE3

PE15

PE11

PE7

PE4

PE16

PE12

PE8

Send Local Hulls Receive Local Hulls

Merge Hulls

Merging Local Hulls

PE1

PE13

PE9

PE5

PE2

PE14

PE10

PE6

PE3

PE15

PE11

PE7

PE4

PE16

PE12

PE8

Send Local Hulls Receive Local Hulls

Merge Hulls

Merging Local Hulls

PE1

PE13

PE9

PE5

PE2

PE14

PE10

PE6

PE3

PE15

PE11

PE7

PE4

PE16

PE12

PE8

Send Local Hull

Merge Hulls

Send Local Hull

Merge Hulls

Send Local Hull

Merge Hulls

Final Convex Hull

Mesh pseudo code

• if(col==0)
• {

– MPI_Send

• }
• else if(col==r-1)
• {
• MPI_Recv

– get_hull(inp,out,col);

• if(row==0)
• {

» MPI_Send

}

• else{
• MPI_Recv

 get_hull(inp,out,col);
 // except the last processor MPI SEND

• MPI_Send
• }
• }

 else

• {
• MPI_Recv

– get_hull(inp,out,col);
– MPI_Send
 }

Parallel Implementation – 2

• Algorithm – Divide and Conquer

• Implementation:

1. Data Generation

2. Determination of local convex hulls

3. Merging the convex hulls

Parallel Implementation – 2

• Each PE is assigned a logical rank alongside it’s global
rank

• Data Generation: Same as before

• After each PE has computed local hulls sequentially:
1. Each PE will send it’s local hull to the PE that is next to it

in logical ranking

2. The PE that receives the hull performs merge operation

3. The logical ranks are then updated as:
• ranklogical = ranklogical / 2

• Repeat steps 1 – 3 until the final Hull is computed

SIMULATION: 16 PROCESSORS

Initial Setup: PEs logically ranked (1 - 16)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Data Generation and Sequential
Computation

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Data Data Data Data

Data Data Data Data

Data Data Data Data

Data Data Data Data

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Local
Hull

Parallel Merge

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Send Local Hulls Receive Local Hulls

Merge Hulls

Send Local Hulls Receive Local Hulls

Merge Hulls

Update Rank (Data in 8 PEs)

1 2

3 4

5 6

7 8

Send Local Hulls Receive Local Hulls

Merge Hulls

Update Rank (Data in 4 PEs)

1 2

3 4

Send Local Hulls Receive Local Hulls

Merge Hulls

Update Rank (Data in 2 PEs)

1 2

Send Local Hulls Receive Local Hulls

Merge Hulls

Final Convex Hull

Tree implementation

• while(stop){
• if(rank%2 == 0)
• {
• count++;
• MPI_Recv(inp, count, MPI_INT, world_rank-iter, 0, MPI_COMM_WORLD,MPI_STATUS_IGNORE);
• get_hull(inp,out,count);

• }
• else if(world_rank!=world_size-1)
• {
• MPI_Send(out, count, MPI_INT, world_rank+iter, 0, MPI_COMM_WORLD);

• stop =0;
• }
•
• iter = iter*2;

• rank = rank/2;

• }

Mesh vs Tree Runtime Analysis

Runtime analysis: Mesh

Reference

• Russ Miller and Laurence boxer; Algorithms:
Sequential and Parallel; 3rd edition

• Michael T. Goodrich; Finding the Convex Hull
of a Sorted Point Set in Parallel;

• Russ Miller and Quentin F. Stout; Efficient
Parallel Convex Hull Algorithms; IEEE
Transaction on Computers vol. 37 no. 12

Thank You

Questions???

