
Kun Lin

CSE633

Connected
Component Labeling
using MPI

2

Table of Content
- Problem Description
- Sequential Algorithm
- Parallel Approach
- Results and Comparisons
- Conclusion

3

Problem Description
Connected-component labeling, also known for region
extraction or region labeling is a graph theory problem.

- Goal is to detect unique region in a binary image
where each unique region is given an unique label.

- Each foreground pixel can be considered an
vertex, vertices are neighbors if they’re one pixel
spacing away. We could have four-connected
neighbors or eight connected neighbors

4

Real world applications

Labeling CT
cross-section

Application on
clustering scene

5

Two Pass algorithm (sequential)
Processor will scan through the image two times (row major)

First pass:

- If the pixel x is a foreground pixel, check the its neighbors that is

above x and on the left of x.

- If two neighbor are background pixel, then x will have a new unique

label, or if only one of them is foreground pixel with existing label,
then x will be assign same label

- If two neighbor are both foreground pixel and have different label -
we will take the min but set up a equivalent list

Second pass:

- Re-labeling each foreground pixel based on its lowest equivalent list

6

Parallel Approach
- Divide the image by rows, where each processor get some row intervals of

image

- Each Processor locally compute two pass algorithm on the local image

- All processor will pass only the neighboring row result to root processor, then
root processor will compute a global equivalent list and broadcast the list to all
processor

- Then all processors will perform second pass that will re-label all its local
necessary pixels

7

Equivalent list example
- Currently using dictionary as data structure

to store equivalent list

- Where 1=> 2; 1=> 3 will store as
Dictionary [1] => [2, 3]

Some possible cases

1 2

2 3
1 2, 3

1 3

2 3 , 4
1 2, 3 , 4

8

Individual result from each node Combined result

Labeling 16 x 16 size
image, divide data into
4 node, each have size
4x16 data

Boundary labels
send to root node to
compute global
equivalent list then
bcast the result for
relabeling

9

Testing parallel runs
- Using MPI Library and UB CCR academic cluster

- Programs are ran in range of 1 - 128 CPUs, tested on
image size 27 x 27 and 28 x 28

- Data could be divide in many ways, for this experiment
they are divided by row, which is straightforward to keep
track of index and corresponding communication between
processors

10

Processors Time (s)

2 1.51

4 0.384

8 0.153

16 0.25

32 2.286

64 10.13

128 39.20

Results of 128 X 128 Graph

11

Processors Time (s)

2 87

4 14.102

8 2.246

16 1.3

32 3.37

64 13.113

128 61.065

Results of 256 X 256 Graph

12

Speed up / Scaling

Processors

Scaling

2 1

4 6.169

8 38.736

16 66.923

32 25.82

64 1.425

Let two node’s runtime be
our base case

13

Conclusion
- Parallel Component labeling showed faster run time than sequential

- Using number of node in range from 4 - 32 we can see a significant
speed up as input image size increases, as we adding more nodes, we
tends to see longer run time that might be cause by too much
processor communication

- Graph tested for this project are randomly generated

- Real world image’s pixel tends to be more cluster and separate,
which will work well with this parallel implementation

14

Reference:

- R. Miller and L. Boxer, Algorithms Sequential and Parallel: A Unified approach
- Connected-componenet labeling - wikipedia

https://en.wikipedia.org/wiki/Connected-component_labeling
- Parallel Programming with MPI For python

https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
- Image 1 Slide 3 http://k-sience.blogspot.com/2017/06/object-counting-using-connected.html
- Connected Component - Udacity - youtube-channel
- http://www.cs.utexas.edu/~grauman/courses/378/slides/lecture3_full.pdf

https://en.wikipedia.org/wiki/Connected-component_labeling
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
http://k-sience.blogspot.com/2017/06/object-counting-using-connected.html
http://www.cs.utexas.edu/~grauman/courses/378/slides/lecture3_full.pdf

15

Questions?

