Connected

Component Labeling
using MP|

Kun Lin

CSE633

-% University at Buffalo The State University of New York

% University at Buffalo The State University of New York

Table of Content

- Problem Description

- Sequential Algorithm

- Parallel Approach

- Results and Comparisons
- Conclusion

.(é University at Buffalo The State University of New York

Problem Description

Connected-component labeling, also known for region
extraction or region labeling is a graph theory problem.

- Goal is to detect unique region in a binary image

where each unique region is given an unique label.

- Each foreground pixel can be considered an ololololololo
vertex, vertices are neighbors if they’re one pixel 110lo0lof212]!2
spacing away. We could have four-connected 1111110l 0F21|o0
neighbors or eight connected neighbors 1110/ 0/l0l2]0
0]0|O0 0} 2|0
010 0|00 ™
oOojo0(0|0|0] 4|4 o

-(é University at Buffalo The State University of New York

O
Real world applications

Labeling CT
cross-section
Application on
clustering scene

L

4 ,\‘* J

% University at Buffalo The State University of New York

Two Pass algorithm (sequential)

Processor will scan through the image two times (row maijor)
First pass:

- If the pixel x is a foreground pixel, check the its neighbors that is
above x and on the left of x.
- If two neighbor are background pixel, then x will have a new unique

label, or if only one of them is foreground pixel with existing label,

P PP WWWWWW

0
0
0
%)
%)
0
%)
%)
%

COOODOODOO®®
OO0 OO®
PRRPRRPRRRERRRLPR
P RRPRRPRRRLRRLRRLPR
PR RRRRERRRR
P RRPRRPRRRPRRRLRO®
PRPRRRPRRRPPROO®
= R R R R R, 0000
O R RFRPRFRPRFRPROIOCO®
O R R RPRRERNNMNRN
O R R ERNNNN
ORRPRPRPRNNNN
PR R OO ®
PRPRPRPOOOO®O® W
R P W WwWwWwwww

then x will be assign same label
- If two neighbor are both foreground pixel and have different label -
we will take the min but set up a equivalent list

Second pass:

- Re-labeling each foreground pixel based on its lowest equivalent list

-tﬁ University at Buffalo The State University of New York

Parallel Approach

- Divide the image by rows, where each processor get some row intervals of
image

- Each Processor locally compute two pass algorithm on the local image

- All processor will pass only the neighboring row result to root processor, then

root processor will compute a global equivalent list and broadcast the list to all
processor

- Then all processors will perform second pass that will re-label all its local
necessary pixels

-té University at Buffalo The State University of New York

Equivalent list example

- Currently using dictionary as data structure
to store equivalent list
- Where 1=> 2; 1=> 3 will store as
Dictionary [1] => [2, 3]

Some possible cases

)
)

Y

2,3

Y

2,3,4

Individual result from each node Combined result

—

Labeling 16 x 16 size
image, divide data into
4 node, each have size
4x16 data

>

Boundary labels
send to root node to o 2 4 6
compute global
equivalent list then
bcast the result for
relabeling

-tﬁ University at Buffalo The State University of New York

Testing parallel runs

- Using MPI Library and UB CCR academic cluster

- Programs are ran in range of 1 - 128 CPUs, tested on
image size 2’ x 2" and 28 x 28

- Data could be divide in many ways, for this experiment
they are divided by row, which is straightforward to keep
track of index and corresponding communication between

processors

Results of 128 X 128 Graph

Processors Time (s) vs. # of Node for 128 x 128 image
12
2 1.51 10 /‘-
pd
8
4 0.384 @ P
8 0.153 2
= /

,
16 0.25 2 /
32 2.286 O o

10 20 30 40 50 60
64 10.13

of Node
128 39.20

10

Results of 256 X 256 Graph

Processors

4 14.102
8 2.246
16 1.3
32 3.37
64 13.113
128 61.065

Time(s) vs. # of Node 256 x 256 image

10 20 30 40 50 60

of Node

11

Speed up / Scaling

Let two node’s runtime be
our base case

Speed Up vs. # of Node

Scaling N
Processors
60
. /
© 40 /
4 6.169 g N
% 20 \
8 38.736 [T |
J — 1
16 66923 ° 10 20 30 40 50 60
32 25.82 # of Node
64 1.425
12

-tﬁ University at Buffalo The State University of New York

Conclusion

- Parallel Component labeling showed faster run time than sequential

- Using number of node in range from 4 - 32 we can see a significant
speed up as input image size increases, as we adding more nodes, we
tends to see longer run time that might be cause by too much
processor communication

- Graph tested for this project are randomly generated

- Real world image’s pixel tends to be more cluster and separate,
which will work well with this parallel implementation

Reference:

R. Miller and L. Boxer, Algorithms Sequential and Parallel: A Unified approach
- Connected-componenet labeling - wikipedia
https://en.wikipedia.org/wiki/Connected-component_labeling
- Parallel Programming with MPI For python
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
- Image 1 Slide 3 http://k-sience.blogspot.com/2017/06/object-counting-using-connected.html
- Connected Component - Udacity - youtube-channel
- http://www.cs.utexas.edu/~grauman/courses/378/slides/lecture3_full.pdf

14

https://en.wikipedia.org/wiki/Connected-component_labeling
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
http://k-sience.blogspot.com/2017/06/object-counting-using-connected.html
http://www.cs.utexas.edu/~grauman/courses/378/slides/lecture3_full.pdf

Questions?

15

