
0/1 KNAPSACK
PROBLEM
CSE 633 – Parallel Algorithms

Prof. Russ Miller

Student Name: Lakshya Rawal

UB Person Number: 50459636

Outline
• Problem Statement

• Applications

• Brute Force Solution

• Sequential Algorithm

• Parallel Approach

• Results

• To Do

• References

2

Problem Statement
We are given N items where each item has some weight and
value associated with it. We are also given a bag with capacity
W, [i.e., the bag can hold at most W weight in it]. The target is
to put the items into the bag such that the sum of values
associated with them is the maximum possible.

Applications
• Finding the least wasteful way to cut raw materials
• Selection of investments and portfolios, selection of assets

for asset-backed securitization
• Generating keys for the Merkle–Hellman and other knapsack

cryptosystems.
3

Brute Force Solution
This solution is brute-force because it evaluates the total weight
and value of all possible subsets, then selects the subset with
the highest value that is still under the weight limit.

• Time complexity: 𝑂(2!), due to the double the number of
calls at each level

• Auxiliary space: 𝑂(1) , no additional storage is needed.

4

Sequential Algorithm: Dynamic Programming
Dynamic programming generates solution to knapsack problem in 𝑂(𝑛") time, a time controlled by
the number of items and the maximum capacity in the problem.

5

Sequential Algorithm
• Time complexity: 𝑂(𝑁 ∗𝑊)	, where we create a matrix of number of items and each capacity

• Auxiliary space: 𝑂(𝑁 ∗𝑊) , storage is needed to store the previous results.

6

V/W 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

2/3 0 0 0 2 2 2 2 2

2/1 0 2 2 2 4 4 4 4

4/3 0 2 2 4 6 6 6 8

5/4 0 2 2 4 6 7 7 9

3/2 0 2 3 5 6 7 9 10

Max Value: 10

Items Included: 3/2, 5/4, 2/1

Parallel Algorithm

• P Processors are assigned W/P columns
which they compute independently

• P1 starts for the first column and fills up every
nth column. If the condition is satisfied that it
needs the value from another column it will
call for the value using MPI_RECV.

• The Processor then uses MPI_ISEND to send
all its calculated values to other processors in
the columns they might need it.

• This value is then updated with the current
value which is the value of the current item it
is processing.

7

Approach: Dividing columns between processors

V/W 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

2/3 0 0 0 2 2 2 2 2

2/1 0 2 2 2 4 4 4 4

4/3 0 2 2 4 6 6 6 8

5/4 0 2 2 4 6 7 7 9

3/2 0 2 3 5 6 7 9 10

P1 P2 P3 P1 P2 P3 P1 P2 …

Experiment Results
This table depicts the run time of parallel algorithm in milliseconds with the increase in maximum weight
and number of items in the knapsack problem

Nodes 600/300 800/200 1000/200 1200/300
2 149.21 228.83 296.89 474.13
4 123.84 133.16 176.52 282.23
8 99.22 86.30 110.21 184.62
16 77.93 59.19 71.95 117.76
32 116.35 123.16 96.09 150.10
64 167.51 201.80 175.83 231.43
128 426.10 273.16 457.60 579.56

Graph and Analysis
We see a gradual decrease in run time
of this algorithm as we increase the
number of nodes in this approach as
more processors are responsible for
fewer columns.

9

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 20 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Nodes

Time vs Nodes

600/300 800/200 1000/200 1200/300

Speedup vs Nodes
• When comparing this parallel

approach to a sequential algorithm
we were able speedup for decent
input sizes whereas there are signs of
diminishing returns after 64
processors.

10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 20 40 60 80 100 120 140

Sp
ee

du
p

Nodes

Speedup vs Nodes

600/300 800/200 1000/200 1200/300

Note: Speedup was calculated using the formula: Tseq / Tparallel

To Do

• Identify opportunity areas using MPI + OpenMP hybrid approach which is more popular for solving np
hard problems

• Understand the use of CUDA in solving np complete problems considering the Integration of GPU
Based Parallel Computing in this problem

11

References
• https://ubccr.freshdesk.com/support/solutions/articles/13000026

245-tutorials-workshops-and-training-documents

• https://docs.ccr.buffalo.edu/en/latest/

• https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

• https://www.educative.io/blog/0-1-knapsack-problem-dynamic-
solution

• https://en.wikipedia.org/wiki/Knapsack_problem

12

https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.educative.io/blog/0-1-knapsack-problem-dynamic-solution
https://www.educative.io/blog/0-1-knapsack-problem-dynamic-solution
https://en.wikipedia.org/wiki/Knapsack_problem

