
Longest Common 
Subsequence in 
Parallel
CSE633 Parallel Algorithm - Lavanya Nadanasabapathi



1. LCS Overview

2. Sequential - DP Approach

3. Parallel - AntiDiagonal Approach

4. Results

5. Observations

6. Reference

Contents



LCS Overview
The Longest Common Subsequence (LCS) problem is finding the longest subsequence present in given 

two sequences in the same order.

This algorithm is used in numerous fields such as bioinformatic, data mining, social networks, computer 

security, Git Merging etc. 

Eg:

3



DP Approach
The dynamic programming is a classical approach for solving the LCS problem.

It is based on the filling of a score matrix through a scoring mechanism(a recursive formula). 

The scoring table is filled row by row using the scoring function.

The highest calculated score is the length of the LCS and the subsequence can be found by tracing back 

the table.

4



DP Approach

Time and Space Complexity:
O(mxn), where m and n are length 
of the 2 strings.

Data dependency in the score matrix 



Anti-Diagonal Parallel Approach

The value is rank of the process 
which is assigned to compute the 
value. (4 processes)

0 1 2 3 3 3 3

0 1 2 2 2 3 3

0 1 1 2 2 2 3

0 0 1 1 2 2 3

0 0 1 1 2 2 2

0 0 0 1 1 1 1

0 0 0 0 0 0 0

Computing the table in diagonal major order, each element of the diagonal can be computed independently 

given that the previous diagonals are already computed.



Anti-Diagonal Parallel Approach

MASTER

WORKER1 WORKER2 WORKER3

R1 R2 R3 R4 R5

R2 R3 R4 R5 R6

R3 R4 R5 R6 R7

R4 R5 R6 R7 R8

R2 R2

R3 R3R3



Anti-Diagonal Parallel Approach
Every diagonal is computed by the N processes, with 

each process working on a block of data. 

• The first one is to broadcast the one sequence 

to all nodes. 

• The second part is to scatter another sequence 

to all nodes. 

• The last one is to send/receive the completed 

part to other nodes. Once the data is scattered 

to all nodes, each node will just calculate a 

piece of the data instead of running the entire 

data in every node. 

MASTER

WORKER1 WORKER2 WORKER3

R2 R2

R3 R3R3



Adjacent blocks 
• Evaluating an entry at the boundary between two processes depend on entries of adjacent processes in 

previous diagonal.

• Solution: When a process computes its own block of diagonals, it receives the last element computed by 

the previous process and first element of following process.

9

0 1 1

0 0 1

0 0 1

Eg: Process 1 sends 1st entry of its own 
block to process 0 and the last element to 
process 2.



Result - Sequential
Input size time (ms)

8 0.004053

50 0.089884

100 0.374079

1000 34.72805

10000 1574.15

20000 5967.81

30000 12131.86

50000 34674

100000 160606



Results - Parallel
No of 
Processor
s

input size 
8

input size 
50

input size 
100

input size
1000

input size 
10000

input size 
20000

input size 
30000

input size 
50000

input size 
100000

2 0.102043 0.492 1.0881 20.85 714.703 2582.01 3543 15396.7 65245

4 0.168085 0.771 1.481 15.36 411.682 1339.26 2504 7737.12 33919

8 0.169992 0.683 1.502991 11.6 260.267 787.77 1537.35 4061.58 17338

16 0.154018 0.691 1.569986 10.85 173.125 456.61 910.85 2329.9 10216.25

32 0.146866 0.88 2.621174 12.97 131.259 299.371 614.99 1639.441 5475

64 0.258923 1.693 4.2729 29.99 236.231 543.089 857.22 2139.35 8047

128 0.628948 3.0109 11.835 41.85 429.501 812.937 1675.61 2743.01 10358

256 1.266003 8.008 14.82105 107.89 859.333 1944.154 3171.99 5667.65 15722



Results - Parallel
For small input size - Fixed Data and increase number of processors

No of 
Processors

Input size 8 Input size 50 Input size 100

2 0.102043 0.492 1.0881

4 0.168085 0.771 1.481

8 0.169992 0.683 1.502991

16 0.154018 0.691 1.569986

32 0.146866 0.88 2.621174

64 0.258923 1.693 4.2729

128 0.628948 3.0109 11.835

256 1.266003 8.008 14.82105



Results- Parallel
For medium input size - Fixed Data and increase number of processors

No of 
Processors

Input size 
10000

Input size 
20000

Input size 
30000

2 714.703 2582.01 3543

4 411.682 1339.26 2504

8 260.267 787.77 1537.35

16 173.125 456.61 910.85

32 131.259 299.371 614.99

64 236.231 543.089 857.22

128 429.501 812.937 1675.61

256 859.333 1944.154 3171.99



Results- Parallel
For Large input size - Fixed Data and increase number of processors

No of 
Processors

Input size 
50000

Input size 
1,00,000

Input size 
1,50,000

2 65245 101441 136157

4 33919 52189 69278

8 17338 27439 35726

16 10216.25 15113 19883

32 5475 9101 11433

64 8047 10323 14705

128 10358 13310 17116

256 15722 20078 24598



Observations

1. As a result of parallelization, computations are faster for large number of data.

2. As the number of processors increase, the communication overhead between the 

processors increase which results in longer computation time.

3. Hence selecting the optimal number of processors is critical for good computation 

results.



Reference

1. Zuqing Li, Aakashdeep Goyal, Haklin Kimm “Parallel Longest Common Sequence Algorithm on 

Multicore Systems Using OpenACC, OpenMP and OpenMPI” 2017 IEEE 11th International Symposium 

on Embedded Multicore/Many-core Systems-on-Chip

2. Amine Dhraief, Raik Issaoui, Abdelfettah Belghith “Parallel Computing the Longest Common 

Subsequence (LCS) on GPUs: Efficiency and Language Suitability” INFOCOMP 2011 : The First 

International Conference on Advanced Communications and Computation



Thank you!


