Parallel Spectral Clustering in Distributed Systems

Liang Ge

Department of Computer Science and Engineering
State University of New York at Buffalo
Clustering

- Important subroutines in machine learning and data mining
- Partition data objects into groups where they are similar within group while dissimilar between group
Spectral Clustering

- The most recent state-of-the-art clustering (Shi. et al. PAMI 2000)

Algorithm 1

Input: Data points x_1, \cdots, x_n, k: number of desired clusters

Output: Clustering: $\{C_1, \ldots, C_k\}$

1. Construct similarity matrix $S \in \mathbb{R}^{n \times n}$
2. Modify S to be a sparse matrix
3. Compute the normalized Laplacian matrix L
4. Compute the first k eigenvectors of L
5. Construct $V \in \mathbb{R}^{n \times k}$, whose columns are the k eigenvectors
6. Use k-means algorithm to cluster n rows of U into k groups
Spectral Clustering

Similarity Matrix S (Gaussian Kernel):

$$S_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

Normalized Laplacian:

$$L = I - D^{-1/2}SD^{-1/2}$$

Diagonal matrix:

$$D_{ii} = \sum_{j=1}^{n} S_{ij}$$
Data Set

- RCV-1 Data set from MIT
 - 199328 Documents
 - Each document is a vector of <index, value>
General Idea

- Divide the matrix into \(p \) parts and stores them into \(p \) machines.
- For each data point \(a \) in the master node, compute the distance with local point \(b \) in each machine.
- Use \(p \) min-heap in each machine to save the local \(t \)-nearest neighbor.
- The master node reduces the local min-heap to obtain the global \(t \)-nearest neighbor.

![Diagram of similarity matrix computation](image)
// Broadcast this document to all computer
Document doc;
if (which_computer == myid_) {
 doc = docs_[i / pnum_];
}
BroadcastDocument(&doc, which_computer);
for (int j = 0; j < docs_.size(); ++j) {
 if (which_computer == myid_ && i / pnum_ == j) {
 // Do not compute myself to myself
 continue;
 }
 double distance = sqrt(doc.two_norm_sq +
 docs_[j].two_norm_sq -
 2 * InnerProduct(doc, docs_[j]));
}

void ComputeDistance::BroadcastDocument(Document* doc, int root) {
 string s;
 if (myid_ == root) {
 doc->Encode(&s);
 }
 int s_size = s.size();
 MPI_Bcast(&s_size, 1, MPI_INT, root, MPI_COMM_WORLD);
 if (myid_ != root) {
 s.resize(s_size);
 }
 MPI_Bcast(&s[0], s_size, MPI_CHAR, root, MPI_COMM_WORLD);
 doc->Decode(s);
}
Running Time: varying nodes with fixing ppn
Running Time: varying ppn while fixing nodes
Why we don’t see the turning point?

- **Sweet spot:** \(T(40) = 263 \text{ s} \)
- **Bottom point:** \(T(260) = 89 \text{ s} \)
Finding the Eigenvectors

- **Compute the first k eigenvectors**
 - Arnoldi factorization
 - PARPACK: a parallel ARPACK implementation based on MPI

```cpp
void Evd::Compute(int num_eigen, int eigen_space,
                  int max_iterations, double tolerance) {
    CHECK_GT(num_total_rows_, num_eigen);
    CHECK_GE(num_total_rows_, eigen_space);
    solver_ =
        new EigenSolverSymmetric(num_local_rows_,
                                  "LA",
                                  num_eigen,
                                  eigen_space);

    // Do EVD.
    solver_->set_max_iterations(max_iterations);
    solver_->set_tolerance(tolerance);
    solver_->Solve(*this,
                   &num_converged_,
                   &eigen_values_,
                   &eigen_vectors_);
}
```
Running Time: varying nodes with fixing ppn

![Graph showing running time varying with number of nodes while fixing ppn=2.](image)
Running Time: varying nodes with fixing ppn
Parallel k-means

- **Initial k Cluster Centers**
 - The master node randomly choose one as the first cluster center
 - It broadcasts the center to all the worker nodes
 - Each worker node finds one point that is farthest to this point
 - The master node choose the second cluster center from all worker nodes return
 - Iterate k times to find the k initial cluster centers
 - It is actually a MPI_AllReduce operation for the master node
Initial k Cluster Centers

```c
for (int i = 0; i < num_columns_; ++i) {
    cluster_centers_[0][i] = local_rows_[rand_index][i];
}

MPI_Bcast(&cluster_centers_[0][0],
           num_columns_,
           MPI_DOUBLE,
           0, MPI_COMM_WORLD);

MPI_Allreduce(&cluster_centers_storage_[0],
              &cluster_centers_storage_backup[0],
              num_clusters_ * num_columns_,
              MPI_DOUBLE,
              MPI_SUM, MPI_COMM_WORLD);
memcpy(&cluster_centers_storage_[0],
       &cluster_centers_storage_backup[0], num_clusters_ * num_columns_);
```
Parallel k-means

- Parallel K-means
 - k initial cluster centers will be broadcast to all machines with local data
 - Each machine computes labels of points by assigning to their nearest neighbors
Parallel k-means

// Sum all data points.
MPI_Allreduce(&new_cluster_centers_storage[0],
 &cluster_centers_storage[0],
 num_clusters_ * num_columns_,
 MPI_DOUBLE,
 MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(&new_cluster_sizes[0],
 &cluster_sizes[0],
 num_clusters_,
 MPI_INT,
 MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(&sum_local_loss,
 &sum_total_loss,
 1,
 MPI_DOUBLE,
 MPI_SUM, MPI_COMM_WORLD);

// Compute the loss change.
delta = fabs(sum_total_loss - sum_total_loss_old)
 / (sum_total_loss_old + 1e-10);
sum_total_loss_old = sum_total_loss;

// Average the sum to obtain new centers.
int count_not_zero = 0;
for (int i = 0; i < num_clusters_; ++i) {
 if (cluster_sizes_[i] > 0) {
 for (int j = 0; j < num_columns_; ++j) {
 cluster_centers_[i][j] /= cluster_sizes_[i];
 }
 } else {
 count_not_zero += 1;
 }
}
Running Time: varying nodes with fixing ppn
Running Time: varying ppn while fixing node = 2
Conclusions and Future Work

- Parallel Computing is a great way of reducing running time with the cost of complicated codes and tricky debugging.

- Within node communication is faster than between node communication, enabling greater speedup.

- The communication and initialization cost, no matter how small, will eventually dominate the running time if we continue to increase number of processors.