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 Clustering 

Important subroutines in machine learning and data mining 

Partition data objects into groups where they are similar within group while 
dissimilar between group 

 

 

    Clustering 
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 Spectral Clustering 

 The most recent state-of-the-art clustering (Shi. et al. PAMI 
2000) 

 

 

    Spectral Clustering 
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    Spectral Clustering 

Similarity Matrix S (Gaussian Kernel):  

Normalized Laplacian:  

Diagonal matrix:  
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 RCV-1 Data set from MIT 

 199328 Documents 

 Each document is a vector of <index, value> 

 

 

    Data Set 
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 General Idea 

Divide the matrix into p parts and stores them into p machines 

For each data point a in the master node,  compute the distance with local 
point b in each machine 

Use p min-heap in each machine to save the local t-nearest neighbor 

The master node reduces the local min-heap to obtain the global t-nearest 
neighbor 

 

 

    Similarity Matrix Computation 
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    Major Codes 
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    Running Time: varying nodes with fixing ppn 
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    Running Time: varying ppn while fixing nodes 
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    Why we don’t see the turning point? 
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 Compute the first k eigenvectors 

Arnoldi factorization 

PARPACK: a parallel ARPACK implementation based on MPI 

 

 

 

 

 

 

 

Finding the Eigenvectors 
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    Running Time: varying nodes with fixing ppn 
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    Running Time: varying nodes with fixing ppn 
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 Initial  k Cluster Centers 

The master node randomly choose one as the first cluster center 

It broadcasts the center to all the worker nodes 

Each worker node finds one point that is farthest to this point 

The master node choose the second cluster center from all 
worker nodes return 

Iterate k times to find the k initial cluster centers 

It is actually a MPI_AllReduce operation for the master node 

 

 

 

 

 

 

    Parallel k-means 
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    Initial k Cluster Centers 
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 Parallel K-means 

k initial cluster centers will be broadcast to all machines with 
local data 

Each machine computes labels of points by assigning to their 
nearest neighbors 

 

 

 

 

 

 

 

 

    Parallel k-means 
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    Parallel k-means 
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    Running Time: varying nodes with fixing ppn 
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    Running Time: varying ppn while fixing node=2 
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 Parallel Computing is a great way of reducing running time 
with the cost of complicated codes and tricky debugging 

 

Within node communication is faster than between node 
communication, enabling greater speedup. 

 

The communication and initialization cost, no matter how 
small, will eventually dominate the running time if we continue 
to increase number of processors 

 

 

 

 

 

 

Conclusions and Future Work 


