
Parallel Implementation of
Deep Learning Using MPI

CSE633 Parallel Algorithms (Spring 2014)

Instructor: Prof. Russ Miller

Team #13: Tianle Ma
Email: tianlema@buffalo.edu

May 7, 2014

Introduction to Deep Belief Network

Parallel Implementation Using MPI

Experiment Results and Analysis

Content

Why Deep Learning?

• Deep Learning is a set of algorithms in machine learning that attempt to
model high-level abstractions in data by using architectures composed of
multiple non-linear transformations.

• It has been the hottest topic in speech recognition, computer vision,
natural language processing, applied mathematics, … in the last 2 years

• Deep Learning is about representing high-dimensional data

• It's deep if it has more than one stage of non-linear feature
transformation

Today’s Focus

Stacked
Restricted
Boltzmann
Machines

𝑝 𝑣, ℎ =
1

𝒵
𝑒ℎ
𝑇𝑊𝑣+𝑏𝑇𝑣+𝑎𝑇ℎ

• for all hidden units 𝑖 do

Compute 𝑄 ℎ0𝑖 𝑣0 = sigm(𝑏𝑖 + 𝑗𝑊𝑖𝑗𝑣0𝑗) (for binomial units)

Sample ℎ0𝑖 from 𝑄 ℎ0𝑖 𝑣0
• end for

• for all hidden units 𝑗 do

Compute P 𝑣1𝑗 ℎ0 = sigm(𝑐𝑗 + 𝑖𝑊𝑖𝑗ℎ0𝑖) (for binomial units)

Sample 𝑣1𝑗 from P 𝑣1𝑗 ℎ0
• end for

• for all hidden units 𝑖 do

Compute 𝑄 ℎ0𝑖 𝑣0 = sigm(𝑏𝑖 + 𝑗𝑊𝑖𝑗𝑣0𝑗) (for binomial units)

Sample ℎ0𝑖 from 𝑄 ℎ0𝑖 𝑣0
• end for

Go
Up

Go
Up

Go
Down

Algorithm1 RBMupdate (𝑣0, 𝜖,𝑊, 𝑏, 𝑐)

Algorithm1 RBMupdate (𝑣0, 𝜖,𝑊, 𝑏, 𝑐)

• 𝑊 ← 𝑊 − 𝜖(ℎ0𝑣0
′ − 𝑄 ℎ1 = 1 𝑣1 𝑣1

′)

• 𝑏 ← 𝑏 − 𝜖(ℎ0 − 𝑄 ℎ1 = 1 𝑣1)

• 𝑐 ← 𝑐 − 𝜖(𝑣0 − 𝑣1)

Contrastive Divergence

Update model parameters

Feature representation

Algorithm2 PreTrainDBN (𝑥, 𝜖, 𝐿, 𝑛,𝑊, 𝑏)
• Initialize 𝑏0 = 0

• for 𝑙 = 1 𝑡𝑜 𝐿 do

Initialize 𝑊𝑙 = 0, 𝑏𝑙 = 0

while not stopping criterion do

𝑔0 = 𝑥

for 𝑖 = 1 𝑡𝑜 𝑙 − 1 do

Sample 𝑔𝑖 from 𝑄 𝑔𝑖 𝑔𝑖−1

end for

RBMupdate (𝑔𝑙−1, 𝜖,𝑊𝑙 , 𝑏𝑙 , 𝑏𝑙−1)

end while

• end for

Stacked RBMs!

Unsupervised
Learning

Learn Latent Variables
(Higher level
Feature Representations)

Algorithm3 FineTuneDBN (𝑥, 𝑦, 𝜖, 𝐿, 𝑛,𝑊, 𝑏)
• 𝜇0(𝑥) = 𝑥

• for 𝑙 = 1 𝑡𝑜 𝐿 do

𝜇𝑙 𝑥 = E 𝑔𝑖 𝑔𝑖−1 = 𝜇𝑙−1 𝑥

= sigm(𝑏𝑗
𝑙 +

𝑘

𝑊𝑗𝑘
𝑙 𝜇𝑘
𝑙 (𝑥)) (for binomial units)

• end for

• Network output function: 𝑓 𝑥 = 𝑉(𝜇𝑙 𝑥 ′, 1)′

• Use Stochastic Gradient Descent to iteratively minimize cost function
𝐶 𝑓 𝑥 , 𝑦 (Back Propagation)

Supervised
Learning

Fine tune Model
parameters

Learning Deep Belief Network

Step1:

Unsupervised generative pre-training of stacked RBMs (Greedy layer
wise training)

Step2:

Supervised fine-tuning (Back Propagation)

How many parameters to learn?

𝑖=0

𝐿

𝑛𝑖𝑛𝑖+1 +

𝑖=0

𝐿+1

𝑛𝑖

Can We SCALE UP?

• Deep learning methods have higher capacity and have the potential
to model data better.

• More features always improve performance unless data is scarce.

• Given lots of data and lots of machines, can we scale up deep learning
methods?

MapReduce? No!

MPI? Yes!

Model Parallelism
 For large models, partition the model

across several machines.

Models with local connectivity
structures tend to be more amenable
to extensive distribution than fully-
connected structures, given their
lower communication costs.

Need to manage communication,
synchronization, and data transfer
between machines.

Reference Implementation:
Google DistBelief

Data Parallelism (Asynchronous SGD)

Divide the data into a number of subsets and run a
copy of the model on each of the subsets.

Before processing each
batch, a model replica
asks the Parameter Sever
for an updated copy of its
model parameters;

Compute a parameter
gradient.

 Send the parameter
gradient to the server.

Parameter Sever applies the
gradient to the current value
of the model parameters.

Fetch
parameters

Train
DBN

Push
gradients

𝒘
𝒘∆𝑤 𝒘 ∆𝑤 ∆𝑤

Fetch
parameters

Push
gradients

Processing
Training
Data (Train
DBN)

Update
Parameters

Algorithm4 Asynchronous SGD(𝛼)

• Procedure StartFetchingParameters(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← GetParametersFromParameterSever();

• Procedure StartPushingGradients(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠)
SendGradientsToParameterSever(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠);

• Main
Global 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠
while not stopping criterion do

StartFetchingParameters(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)
𝑑𝑎𝑡𝑎 ← GetNextMiniBatch()
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ← ComputeGradient(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑑𝑎𝑡𝑎)
𝑝𝑎𝑟𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 + 𝛼 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠
StartPushingGradients(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠)

end while

MPI_Put(parameters, … , win);

MPI_Get(parameters, … , win);

Train DBN
Takes lots of time

Update the parameters

Experiment

MNIST Handwritten Dataset

• 28 × 28 = 784 𝑝𝑖𝑥𝑒𝑙𝑠

• 60000 training images

• 10000 test images

Partition the training data
into data shards for each
model replica for parallelism.

Cores VS Time (#Iterations = 100)
 Equally divide the training

data into #Total Cores
partitions (Balanced
Partitions).

 The smaller training data,
the less training time which
is dominate in the total time.

 After about 10 partitions,
the training data is small
enough, the training time is
not dominate in the total
time, so the speed-up is not
increasing linearly.

Cores VS Speed-up (#Iterations = 100)
 Equally divide the training

data into #Total Cores
partitions (Balanced
Partitions).

 The smaller training data,
the less training time which
is dominate in the total time.

 After about 10 partitions,
the training data is small
enough, the training time is
not dominate in the total
time, so the speed-up is not
increasing linearly.

Fixing #Node= 2, Accuracy > 90%

 Time begins increasing after
about 20 data partitions.

 Reason:
• Data partition becomes too

small and insufficient to learn
the model parameters.

• So it needs more iterations to
get the same accuracy.

 Speed-up begins decreasing
after about 20 data partitions.

 Reason:
• Data partition becomes too

small and insufficient to learn
the model parameters.

• So it needs more iterations to
get the same accuracy.

Fixing #Node= 2, Accuracy > 90%

Fixing #Tasks Per Node (TPN) = 2

 Time begins increasing after
about 20 data partitions.

 Reason:
• Data partition becomes too

small and insufficient to learn
the model parameters.

• So it needs more iterations to
get the same accuracy.

Similar to the results of fixing
#Nodes

Fixing #Tasks Per Node (TPN) = 2

 Speed-up begins decreasing
after about 20 data partitions.

 Reason:
• Data partition becomes too

small and insufficient to learn
the model parameters.

• So it needs more iterations to
get the same accuracy.

Similar to the results of fixing
#Nodes, slightly different.

#Total Cores VS Time (Accuracy > 90%)

 Time begins increasing after
about 20 data partitions.

 Reason:
• Data partition becomes too

small and insufficient to learn
the model parameters.

• So it needs more iterations to
get the same accuracy.

 Inter-communication cost is
higher than intra-
communication cost.

 Speed begins decreasing after
about 20 data partitions.

 Reason:
• Data partition becomes too

small and insufficient to learn
the model parameters.

• So it needs more iterations to
get the same accuracy.

 Inter-communication cost is
higher than intra-
communication cost.

#Total Cores VS Speed-up (Accuracy > 90%)

Results

#Node #TPN #Total
Cores

Time/s Speed-up

2 2 4 1413 3.1552

2 4 8 674 6.6152

2 6 12 405 11.0152

2 8 16 314 14.2152

2 10 20 318 14.0152

2 12 24 342 13.0152

2 14 28 428 10.4152

2 16 32 741 6.0152

#Node #TPN #Total
Cores

Time/s Speed-up

2 2 4 1411 3.1552

4 2 8 728 6.1254

6 2 12 438 10.1854

8 2 16 337 13.2054

10 2 20 337 13.2054

12 2 24 365 12.2054

14 2 28 474 9.4054

16 2 32 856 5.2054

Table1 Fixing Nodes Table2 Fixing Tasks Per Nodes (TPN)

Inter-communication costs between nodes are higher than
intra-communication costs between nodes.

Conclusion

There is a tradeoff between communication costs and computation costs.
Inter-communication costs > Intra-communication costs

When each data partition is big, the training time of DBN dominates. The
speed-up on CCR using MPI is approximately linear.

When the partition becomes small enough, it’s insufficient to train
sophisticated DBN model. To achieve certain accuracy, it needs more
iterations. The performance could become significant worse when the
partition is too small. It depends on the datasets. The bigger dataset, the
more amenable to extensive distribution and the more obvious speed-up.

In general, using MPI framework to distribute large deep neural network is
a good choice. The efficiency and scalability have been proved in industrial
practice.

Reference
• Russ Miller, Laurence Boxer. Algorithms Sequential & Parallel: A Unified

Approach, 3rd edition, 2012

• Marc Snir, Steve Otto, etc. MPI – The Complete Reference, 2nd Edition, 1998

• Jeffrey Dean, Greg S. Corrado, etc. Large Scale Distributed Deep Networks.
NIPS, 2012

• Yoshua Bengio. Learn Deep Architecture for AI. Foundations and Trends in
Machine Learning, 2009

• http://deeplearning.net/tutorial/

