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Why Deep Learning?

• Deep Learning is a set of algorithms in machine learning that attempt to 
model high-level abstractions in data by using architectures composed of 
multiple non-linear transformations.

• It has been the hottest topic in speech recognition, computer vision, 
natural language processing, applied mathematics, … in the last 2 years

• Deep Learning is about representing high-dimensional data

• It's deep if it has more than one stage of non-linear feature
transformation



Today’s Focus
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• for all hidden units 𝑖 do

Compute 𝑄 ℎ0𝑖 𝑣0 = sigm(𝑏𝑖 +  𝑗𝑊𝑖𝑗𝑣0𝑗) (for binomial units)

Sample ℎ0𝑖 from 𝑄 ℎ0𝑖 𝑣0
• end for

• for all hidden units 𝑗 do

Compute P 𝑣1𝑗 ℎ0 = sigm(𝑐𝑗 +  𝑖𝑊𝑖𝑗ℎ0𝑖) (for binomial units)

Sample 𝑣1𝑗 from P 𝑣1𝑗 ℎ0
• end for

• for all hidden units 𝑖 do

Compute 𝑄 ℎ0𝑖 𝑣0 = sigm(𝑏𝑖 +  𝑗𝑊𝑖𝑗𝑣0𝑗) (for binomial units)

Sample ℎ0𝑖 from 𝑄 ℎ0𝑖 𝑣0
• end for

Go 
Up

Go 
Up

Go 
Down

Algorithm1 RBMupdate (𝑣0, 𝜖,𝑊, 𝑏, 𝑐)



Algorithm1 RBMupdate (𝑣0, 𝜖,𝑊, 𝑏, 𝑐)

• 𝑊 ← 𝑊 − 𝜖(ℎ0𝑣0
′ − 𝑄 ℎ1 = 1 𝑣1 𝑣1

′)

• 𝑏 ← 𝑏 − 𝜖(ℎ0 − 𝑄 ℎ1 = 1 𝑣1 )

• 𝑐 ← 𝑐 − 𝜖(𝑣0 − 𝑣1)

Contrastive Divergence

Update model parameters

Feature representation



Algorithm2 PreTrainDBN (𝑥, 𝜖, 𝐿, 𝑛,𝑊, 𝑏)
• Initialize 𝑏0 = 0

• for 𝑙 = 1 𝑡𝑜 𝐿 do

Initialize 𝑊𝑙 = 0, 𝑏𝑙 = 0

while not stopping criterion do

𝑔0 = 𝑥

for 𝑖 = 1 𝑡𝑜 𝑙 − 1 do

Sample 𝑔𝑖 from 𝑄 𝑔𝑖 𝑔𝑖−1

end for

RBMupdate (𝑔𝑙−1, 𝜖,𝑊𝑙 , 𝑏𝑙 , 𝑏𝑙−1)

end while

• end for

Stacked RBMs!

Unsupervised 
Learning

Learn Latent Variables 
(Higher level 
Feature Representations)



Algorithm3 FineTuneDBN (𝑥, 𝑦, 𝜖, 𝐿, 𝑛,𝑊, 𝑏)
• 𝜇0(𝑥) = 𝑥

• for 𝑙 = 1 𝑡𝑜 𝐿 do

𝜇𝑙 𝑥 = E 𝑔𝑖 𝑔𝑖−1 = 𝜇𝑙−1 𝑥

= sigm(𝑏𝑗
𝑙 + 

𝑘

𝑊𝑗𝑘
𝑙 𝜇𝑘
𝑙 (𝑥)) (for binomial units)

• end for

• Network output function: 𝑓 𝑥 = 𝑉(𝜇𝑙 𝑥 ′, 1)′

• Use Stochastic Gradient Descent to iteratively minimize cost function 
𝐶 𝑓 𝑥 , 𝑦 (Back Propagation)

Supervised 
Learning

Fine tune Model 
parameters



Learning Deep Belief Network

Step1: 

Unsupervised generative pre-training of stacked RBMs (Greedy layer 
wise training)

Step2:

Supervised fine-tuning (Back Propagation)

How many parameters to learn?
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Can We SCALE UP?

• Deep learning methods have higher capacity and have the potential 
to model data better.

• More features always improve performance unless data is scarce.

• Given lots of data and lots of machines, can we scale up deep learning 
methods?

MapReduce?     No!

MPI?     Yes!



Model Parallelism
 For large models, partition the model 

across several machines.

Models with local connectivity 
structures tend to be more amenable 
to extensive distribution than fully-
connected structures, given their 
lower communication costs.

Need to manage communication, 
synchronization, and data transfer 
between machines.

Reference Implementation: 
Google DistBelief



Data Parallelism (Asynchronous SGD)

Divide the data into a number of subsets and run a 
copy of the model on each of the subsets.

Before  processing each 
batch, a model replica 
asks the Parameter Sever 
for an updated copy of its 
model parameters;

Compute a parameter 
gradient.

 Send the parameter 
gradient to the server.

Parameter Sever applies the 
gradient to the current value 
of the model parameters.

Fetch 
parameters

Train 
DBN

Push 
gradients
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Update 
Parameters



Algorithm4 Asynchronous SGD(𝛼)

• Procedure StartFetchingParameters(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← GetParametersFromParameterSever();

• Procedure StartPushingGradients(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠)
SendGradientsToParameterSever(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠);

• Main
Global 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠
while not stopping criterion do

StartFetchingParameters(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)
𝑑𝑎𝑡𝑎 ← GetNextMiniBatch()
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ← ComputeGradient(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑑𝑎𝑡𝑎)
𝑝𝑎𝑟𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 + 𝛼 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠
StartPushingGradients(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠)

end while

MPI_Put(parameters, … , win);

MPI_Get(parameters, … , win);

Train DBN
Takes lots of time

Update the parameters



Experiment

MNIST Handwritten Dataset

• 28 × 28 = 784 𝑝𝑖𝑥𝑒𝑙𝑠

• 60000 training images

• 10000 test images

Partition the training data 
into data shards for each 
model replica for parallelism.



Cores VS Time (#Iterations = 100)
 Equally divide the training 

data into #Total Cores 
partitions (Balanced 
Partitions).

 The smaller training data, 
the less training time which 
is dominate in the total time.

 After about 10 partitions, 
the training data is small 
enough, the training time is 
not dominate in the total 
time, so the speed-up is not 
increasing linearly. 



Cores VS Speed-up (#Iterations = 100)
 Equally divide the training 

data into #Total Cores 
partitions (Balanced 
Partitions).

 The smaller training data, 
the less training time which 
is dominate in the total time.

 After about 10 partitions, 
the training data is small 
enough, the training time is 
not dominate in the total 
time, so the speed-up is not 
increasing linearly. 



Fixing #Node= 2, Accuracy > 90%

 Time begins increasing after 
about 20 data partitions.

 Reason:
• Data partition becomes too 

small and insufficient to learn 
the model parameters.

• So it needs more iterations to 
get the same accuracy.



 Speed-up begins decreasing 
after about 20 data partitions.

 Reason:
• Data partition becomes too 

small and insufficient to learn 
the model parameters.

• So it needs more iterations to 
get the same accuracy.

Fixing #Node= 2, Accuracy > 90%



Fixing #Tasks Per Node (TPN) = 2

 Time begins increasing after 
about 20 data partitions.

 Reason:
• Data partition becomes too 

small and insufficient to learn 
the model parameters.

• So it needs more iterations to 
get the same accuracy.

Similar to the results of fixing 
#Nodes



Fixing #Tasks Per Node (TPN) = 2

 Speed-up begins decreasing 
after about 20 data partitions.

 Reason:
• Data partition becomes too 

small and insufficient to learn 
the model parameters.

• So it needs more iterations to 
get the same accuracy.

Similar to the results of fixing 
#Nodes, slightly different.



#Total Cores VS Time (Accuracy > 90%)

 Time begins increasing after 
about 20 data partitions.

 Reason:
• Data partition becomes too 

small and insufficient to learn 
the model parameters.

• So it needs more iterations to 
get the same accuracy.

 Inter-communication cost is 
higher than intra-
communication cost.



 Speed begins decreasing after 
about 20 data partitions.

 Reason:
• Data partition becomes too 

small and insufficient to learn 
the model parameters.

• So it needs more iterations to 
get the same accuracy.

 Inter-communication cost is 
higher than intra-
communication cost.

#Total Cores VS Speed-up (Accuracy > 90%)



Results

#Node #TPN #Total 
Cores

Time/s Speed-up

2 2 4 1413 3.1552

2 4 8 674 6.6152

2 6 12 405 11.0152

2 8 16 314 14.2152

2 10 20 318 14.0152

2 12 24 342 13.0152

2 14 28 428 10.4152

2 16 32 741 6.0152

#Node #TPN #Total 
Cores

Time/s Speed-up

2 2 4 1411 3.1552

4 2 8 728 6.1254

6 2 12 438 10.1854

8 2 16 337 13.2054

10 2 20 337 13.2054

12 2 24 365 12.2054

14 2 28 474 9.4054

16 2 32 856 5.2054

Table1 Fixing Nodes Table2 Fixing Tasks Per Nodes (TPN)

Inter-communication costs between nodes are higher than 
intra-communication costs between nodes.



Conclusion

There is a tradeoff between communication costs and computation costs. 
Inter-communication costs > Intra-communication costs

When each data partition is big, the training time of DBN dominates. The 
speed-up on CCR using MPI is approximately linear.

When the partition becomes small enough, it’s insufficient to train 
sophisticated DBN model. To achieve certain accuracy, it needs more 
iterations. The performance could become significant worse when the 
partition is too small. It depends on the datasets. The bigger dataset, the 
more amenable to extensive distribution and the more obvious speed-up.

In general, using MPI framework to distribute large deep neural network is 
a good choice. The efficiency and scalability have been proved in industrial 
practice. 
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